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1 Second-Order Linear Boundary Value Problems

1.1 Basic Concepts

A second order linear ODE is an equation of the form
L y(x) = f (x) (1.1)

where
L y(x) := P2(x)y ′′(x)+P1(x)y ′(x)+P0(x)y(x) (1.2)

is a linear differential operator.

It is homogeneous when f = 0; otherwise it is inhomogeneous. We shall use (H) and (N) to denote the two cases respectively.

1.2 Space of Solutions

Theorem 1.1. Space of Solutions

1. If y and ỹ satisfies (N), then y − ỹ satisfies (H).

2. The general solution of (N) is y(x) = yPI (x)+yC F (x), where yPI is any solution of (N), called the particular solution, and
yC F is the general solution of (H), called the complementary function.

3. The solutions of (H) forms a two-dimensional vector space:

yC F (x) = c1 y1(x)+ c2 y2(x) (1.3)

where c1, c2 are arbitrary constants, and y1, y2 are any two linearly independent solutions to (H).

For two functions y1, y2, we define the Wronskian to be the determinant:

W [y1, y2] := det

(
y1 y2

y ′
1 y ′

2

)
= y1(x)y ′

2(x)− y2(x)y ′
1(x) (1.4)

Theorem 1.2. Wronskian and Solutions

Two solutions y1, y2 of (H) are linearly dependent if and only if the Wronskian W [y1, y2] = 0.

Therefore any two solutions of (H) with non-vanishing Wronskian form a basis of the solution space of (H).
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1.3 Solution Methods for Homogeneous Problem

If P0, P1 and P2 are constants, then (H) admits solutions of the form y(x) = emx , where m satisfies

P2m2 +P1m +P0 = 0 (1.5)

known as the auxiliary equation. Let m1,m2 be the roots of the auxiliary euation. When P0,P1,P2 ∈ R, the general solution of (H)
has the form

y(x) =


c1 em1x +c2 em2x , m1,m2 ∈R and m1 6= m2;

(c1 + c2x)emx , m1 = m2 = m ∈R;

eax (c1 cos(bx)+ c2 sin(bx)) , m1 = a +bi, m2 = a −bi, a,b ∈R.

(1.6)

where c1,c2 ∈R are arbitrary constants.

A Cauchy-Euler equation takes the form
αx2 y ′′(x)+βx y ′(x)+γy(x) = 0 (1.7)

where α,β,γ are constants. In this case (H) admits solutions of the form y(x) = xm , where m satisfies

αm(m −1)+βm +γ= 0 (1.8)

Let m1,m2 be the roots of the equation (1.8). When α,β,γ ∈R, the general solution of (H) has the form

y(x) =


c1xm1 + c2xm2 , m1,m2 ∈R and m1 6= m2;

(c1 + c2 ln x)xm , m1 = m2 = m ∈R;

xa (c1 cos(b ln x)+ c2 sin(b ln x)) , m1 = a +bi, m2 = a −bi, a,b ∈R.

(1.9)

where c1,c2 ∈R are arbitrary constants.

Reduction of order: Suppose a solution y1(x) to (H) is known, then the solution to (H) is of the form

y(x) = v(x)y1(x) (1.10)

where v(x) satisfies

v ′(x) = const

y1(x)2 exp

(
−

∫
P1(x)

P2(x)
dx

)
(1.11)

A further integration of (1.11) gives v and thus the general solution.

1.4 Variation of Parameters

Suppose that (H) is solved by y(x) = c1 y1(x)+ c2 y2(x) with linearly independent y1, y2. Then (N) is solved by

y(x) = c1(x)y1(x)+ c2(x)y2(x) (1.12)

where c ′1, c ′2 satisfy the linear equations (
y1 y2

y ′
1 y ′

2

)(
c ′1
c ′2

)
=

(
0

f /P2

)
(1.13)

After inversion and integration we obtain

c1(x) =−
∫ x f (ξ)y2(ξ)

P2(ξ)W (ξ)
dξ c2(x) =

∫ x f (ξ)y1(ξ)

P2(ξ)W (ξ)
dξ (1.14)

1.5 Fitting Boundary Conditions

We consider (N) in the interval (a,b) with boundary data

y(a) = y(b) = 0 (1.15)

As before, (N) is solved by
y(x) = c1(x)y1(x)+ c2(x)y2(x) (1.16)

We impose the boundary condition by setting
c2(a) = c1(b) = 0 (1.17)

3



Then from equation (1.14) we obtain the solution to the BVP

y(x) = y2(x)
∫ x

a

f (ξ)y1(ξ)

P2(ξ)W (ξ)
dξ+ y1(x)

∫ b

x

f (ξ)y2(ξ)

P2(ξ)W (ξ)
dξ :=

∫ b

a
g (x,ξ) f (ξ)dξ (1.18)

where

g (x,ξ) :=


y1(ξ)y2(x)

P2(ξ)W (ξ)
, a < ξ< x < b;

y2(ξ)y1(x)

P2(ξ)W (ξ)
, a < x < ξ< b.

(1.19)

is called the Green’s function.

1.6 Adjoint Problem

For u, v ∈ L2[a,b], we define the inner product of u and v to be

〈u, v〉 :=
∫ b

a
u(x)v(x)dx (1.20)

For a operator L , the adjoint operator L ∗ is an operator with the largest domain dom(L ∗) satisfying

〈L u, v〉 = 〈u,L ∗v〉 (1.21)

for all u ∈ dom(L ) and v ∈ dom(L ∗). The uniqueness and existence of L ∗ follows from Riesz’s Representation Theorem.

For a linear differential operator L , we can obtain L ∗ using integration by parts. For L y = P2 y ′′+P1 y ′+P0 y , the adjoint operator
is given by

L ∗w = (P2w)′′− (P1w)′+P0w = P2w ′′+ (2P ′
2 −P1)w ′+ (P ′′

2 −P ′
1 +P0)w (1.22)

Suppose that L is supplemented with homogeneous boundary conditions (BC):

B1 y =α1 y(a)+α2 y ′(a)+β1 y(b)+β2 y ′(b) = 0,

B2 y =α3 y(a)+α4 y ′(a)+β3 y(b)+β4 y ′(b) = 0.
(BC)

Through integration by parts we obtain:

〈L y, w〉−〈y,L ∗w〉 = (K ∗
1 w)(B1 y)+ (K ∗

2 w)(B2 y)+ (K1 y)(B∗
1 w)+ (K2 y)(B∗

2 w) (1.23)

Then 〈L y, w〉 = 〈y,L ∗w〉 and (BC) enforce that B∗
1 w =B∗

2 w = 0, which are called the adjoint boundary conditions (BC∗).

The problem (L+BC∗) is called

1. fully self-abjoint, if L =L ∗ and BC=BC∗;

2. formally self-adjoint, if L =L ∗ but BC 6=BC∗.

Note that L is self-adjoint if and only if P1 = P ′
2. In this case, set P2 =−p, P1 =−p ′ and P0 = q , we can write L as

L y =−(py ′)′+q y (1.24)

which is called the Sturm-Liouville operator.

1.7 Fredholm Alternative

Consider the linear homogeneous and inhomogeneous ODEs

L y = 0 (H)

L y = f (N)

for x ∈ (a,b), supplemented by linear homogeneous boundary conditions of the form

B1 y =α1 y(a)+α2 y ′(a)+β1 y(b)+β2 y ′(b) = 0,

B2 y =α3 y(a)+α4 y ′(a)+β3 y(b)+β4 y ′(b) = 0.
(BC)

with (α1,α2,β1,β2) and (α3,α4,β3,β4) linearly independent.

We also define the homogeneous adjoint equation
L ∗w = 0 (H∗)

and corresponding adjoint boundary conditions
B∗

1 w =B∗
2 w = 0 (BC∗)
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Theorem 1.3. Fredholm Alternative for Homogeneous Linear ODE

Exactly one of the following possibilities occurs:

1. (H+BC) has only the zero solution. Then (N+BC) has a unique solution.

2. (H+BC) has non-trivial solutions, and so does (H∗+BC∗). In this case:

(a) if 〈 f , w〉 = 0 for all w satisfying (H∗+BC∗), then (N+BC) has a non-unique solution;

(b) otherwise, (N+BC) has no solution.

The condition 〈 f , w〉 = 0 is called the solvability condition.

Suppose that we have instead the inhomogeneous boundary conditions:

B1 y =α1 y(a)+α2 y ′(a)+β1 y(b)+β2 y ′(b) = γ1,

B2 y =α3 y(a)+α4 y ′(a)+β3 y(b)+β4 y ′(b) = γ2.
(NBC)

for some constants γ1, γ2.

Let v(x) satisfies (NBC). Define ỹ := y − v . Then ỹ(x) satisfies the problem

L ỹ = f −L v =: f̃ (H̃)

The solvability condition becomes 〈 f̃ , w〉 = 〈 f , w〉 − 〈L v, w〉 = 0. Substituting equation (1.23) we obtain the solvability condi-
tion:

〈 f , w〉 = γ1K ∗
1 w +γ2K ∗

2 w (1.25)

where K ∗
1 and K2∗ are as in equation (1.23).

(The solvability condition can also be obtained by taking the inner product of (N) with w.)

Theorem 1.4. Fredholm Alternative for Inhomogeneous Linear ODE

Exactly one of the following possibilities occurs:

1. (H+BC) has only the zero solution. Then (N+NBC) has a unique solution.

2. (H+BC) has non-trivial solutions. In this case:

(a) if 〈 f , w〉 = γ1K ∗
1 w +γ2K ∗

2 w for all w satisfying (H∗+BC∗), then (N+NBC) has a non-unique solution;

(b) otherwise, (N+NBC) has no solution.

2 Green’s Function

2.1 Basic Properties

Consider the second-order linear BVP. Let the Green’s function g (x,ξ) given by equation (1.18) and (1.19).

Theorem 2.1. Properties of the Green’s Function

1. g (x,ξ) satisfies (H) for x 6= ξ:
Lx g = P2(x)gxx +P1(x)gx +P0(x)g = δ(x −ξ) (2.26)

The subscript x emphasizes that the derivatives are with respect to x.

2. g (x,ξ) satisfies (BC):
g (a,ξ) = g (b,ξ) = 0 (2.27)

3. g (x,ξ) is continuous at x = ξ:
lim

x→ξ+
g (x,ξ) = lim

x→ξ−
g (x,ξ) (2.28)
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4. gx (x,ξ) is discontinuous at x = ξ:

lim
x→ξ+

gx (x,ξ)− lim
x→ξ−

gx (x,ξ) = 1

P2(ξ)
(2.29)

2.2 Green’s Function and General Linear BVP

In general, consider the linear differential operator of order n:

L y(x) :=
n∑

i=0
Pi (x)y (i )(x) (2.30)

assuming that P0(x), ...,Pn(x) are continuous and Pn(x) 6= 0. For a general n-th-order linear BVP in the interval (a,b), the inhomo-
geneous ODE

L y(x) = f (x), x ∈ (a,b) (N)

is supplemented with n homogeneous linear boundary conditions which are linearly independent:

Bi y
∣∣

x=a,b :=
n∑

j=i

(
αi , j y ( j−1)(a)+βi , j y ( j−1)(b)

)
= 0 (HBC)

(If the boundary conditions are not inhomogeneous, then use the technique in Section 1.7.)

The corresponding problem for the Green’s function is

Lx g (x,ξ) = δ(x −ξ), x,ξ ∈ (a,b) (2.31)

with boundary conditions
Bi g (x,ξ)

∣∣
x=a,b = 0 (2.32)

By integrating equation (2.31), we deduce that the (n −1)-th derivative of g (x,ξ) satifies the jump condition:

∂n−1

∂xn−1 g (x,ξ)

∣∣∣∣x=ξ+

x=ξ−
= 1

Pn(ξ)
(2.33)

and that all lower derivatives are continuous across x = ξ:

g (x,ξ)
∣∣x=ξ+

x=ξ− = ∂

∂x
g (x,ξ)

∣∣∣∣x=ξ+

x=ξ−
= ·· · = ∂n−2

∂xn−2 g (x,ξ)

∣∣∣∣x=ξ+

x=ξ−
= 0 (2.34)

After determining g (x,ξ), the solution to (N)+(HBC) is given by

y(x) =
∫ b

a
g (x,ξ) f (ξ)dξ (2.35)

2.3 Green’s Function in terms of Adjoint

Theorem 2.2. Green’s Function in terms of Adjoint

Suppose that g (x,ξ) satisfies Lx g (x,ξ) = δ(x − ξ) with homogeneous boundary conditions (HBC), then g (ξ, x) satifies the
adjoint equation L ∗

x g (ξ, x) = δ(x −ξ) and the adjoint boundary conditions (BC∗).

In particular, if (L+BC) is fully self-adjoint, then g is symmetric. That is, g (x,ξ) = g (ξ, x).

Suppose that (L+BC) has a non-trivial kernel. Then by Fredholm Alternative, Lx g (x,ξ) = δ(x − ξ) implies the solvability condi-
tion:

0 = 〈g (x,ξ), L ∗w(x)〉x = w(ξ) (2.36)

which is never satisfied. In this situation we cannot construct the Green’s function.
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3 Eigenfunction Expansions

3.1 Constructing Eigenfunction Expansion for Inhomogeneous Problem

For a linear differential operator, we consider the eigenvalue equation:

L y(x) =λy(x) (E)

The eigenvalues of L form a at most countable set {λi }i=1,2,..., and each of the eigenspace ker(λi id−L ) is finite-dimensional. So
we have a corresponding set of non-trivial solutions {yi (x)}i=1,2,..., known as eigenfunctions.

Theorem 3.1. Eigenvalues of the Adjoint Problem

The adjoint problem of (E):
L ∗w =λw (E∗)

has the same eigenvalues as the original problem.

Theorem 3.2. Orthogonal Eigenfunctions

The eigenfunction and adjoint eigenfunction corresponding to distict eigenvalues are orthogonal.

In other words, if L yi =λi yi and L ∗wi =λi wi , then 〈yi , wi 〉 = 0.

Now we construct the solution of the inhomogeneous BVP L y = f (N) subject to linear homogeneous boundary conditions (HBC).

1. Solve the eigenvalue problem (E+HBC) to obtain the eigenvalue-eigenfunction pairs {(λ j , y j )} j=1,2,...;

2. Solve the adjoint eigenvalue problem (E∗+HBC∗) to obtain {(λ j , w j )} j=1,2,...;

3. Assume a solution to (N+HBC) of the form
y(x) =∑

i
ci yi (x) (3.37)

4. By taking the inner product of (N) with wk we obtain that the coefficients ck satisfy that

〈 f , wk〉 =λk ck 〈yk , wk〉 (3.38)

Note that if λk = 0 is an eigenvalue, then ck is not determined by equation (3.38). In this case:

1. if 〈 f , wk〉 = 0, then ck is arbitrary, and (N+HBC) has non-unique solutions;

2. if 〈 f , wk〉 6= 0, then the solution does not exist.

The behavior is in line with Fredholm Alternative Theorem.

3.2 Inhomogeneous Boundary Conditions

We consider the inhomogeneous boundary conditions

Bi y
∣∣

x=a,b = γi (NBC)

We have two methods:

1. Use the technique in Section 1.7 and consider ỹ = y − v ;

2. Follow the process as for homogeneous boundary conditions. When taking the inner product of (N) with wk and doing
integration by parts, the boundary terms will generally present. So we will obtain a different form of equation (3.38).

3.3 Eigenfunction Expansion and Green’s Function

Assuming that kerL is trivial, we can write the solution as

y(x) =∑
i

〈 f , wi 〉
λi 〈yi , wi 〉

yi (x) (3.39)
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Comparing the solution with

y(x) =
∫ b

a
g (x,ξ) f (ξ)dξ (3.40)

We obtain the eigenfunction expansion of the Green’s function:

g (x,ξ) =∑
i

wi (ξ)yi (x)

λi 〈yi , wi 〉
(3.41)

3.4 Sturm-Liouville Theory

Sturm-Liouville theory concerns linear ODE of the form

L y(x) =λr (x)y(x) (3.42)

where L is the Sturm-Liouville operator:

L y(x) :=− d

dx

(
p(x)

dy

dx

)
+q(x)y(x) (3.43)

and r (x) Ê 0 is the weighting function.

Note that L is formally self-adjoint. It is fully self-adjoint if the boundary conditions take the separate form:

α1 y(a)+α2 y ′(a) = 0 (3.44)

β1 y(b)+β2 y ′(b) = 0 (3.45)

The orthogonality condition for the eigenfunctions of L is

〈y j , yk〉r :=
∫ b

a
y j (x)yk (x)r (x)dx = 0 for j 6= k (3.46)

Note that the integral with a weighting function does define an inner product provided r > 0 almost everywhere on [a,b].

Theorem 3.3. Spectral Theorem for Sturm-Liouville Operators

Suppose that the functions p, q,r are real-valued. Then the eigenvalues of the Sturm-Liouville operator L on a finite domain
[a,b] are real, countable, and can be ordered as

λ1 <λ2 <λ3 < ·· · (3.47)

with lim
i→∞

λi =+∞.

Theorem 3.4. Regular Sturm-Liouville Problem

Suppose that the Sturm-Liouville problem further satisfies that

1. p(x),r (x) > 0 for x ∈ [a,b];

2. q(x) Ê 0 for x ∈ [a,b];

3. α1α2 É 0 and β1β2 Ê 0 in the boundary conditions (3.44) and (3.45).

Then all eigenvalues λk Ê 0.

Singular Sturm-Liouville Problem: Suppose that p vanishes at one of the endpoints. For example, p(a) = 0. Then the only bound-
ary condition we can impose on a is that

y(x), y ′(x), w(x), w ′(x) are bounded as x → a (3.48)

If p(a) = p(b) = 0, then [a,b] is called the natural interval for the problem.

For the inhomogeneous Sturm-Liouville problem L y = f with homogeneous boundary conditions, we have a simpler form of
eigenfunction expansion as the Sturm-Liouville operator L is self-adjoint.

y(x) =∑
i

ci yi (x) (3.49)
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where

ci =
〈 f , yi 〉

λi 〈yi , yi 〉r
(3.50)

Finally, any second-order linear differential operator

L y = P2 y ′′+P1 y ′+P0 (3.51)

can be converted into Sturm-Liouville form by multiplying a weighting function:

r L y =−(py ′)′+q y (3.52)

where

r (x) =− 1

P2(x)
exp

(∫
P1(x)

P2(x)
dx

)
; p(x) =−r (x)P2(x); q(x) = r (x)P0(x) (3.53)

In addition, we have
L ∗(r y) = r L y (3.54)

where r is given in (3.53).

4 Power Series Solution of Linear ODEs

4.1 Ordinary and Singular Points

We concern n-th order homogeneous linear ODE of the form

L y(x) = y (n)(x)+Pn−1 y (n−1)(x)+·· ·+P0 y(x) = 0 (4.55)

We will seek a power series expansion of the solution in the nieghbourhood of some point x = x0

The point x0 is an ordinary point of the ODE (4.55), if all coefficients P j (x) are analytic in a neighbourhood of x0. In this case,

1. all n linearly independent solutions of (4.55) are analytic in a nieghbourhood of x0 and have the form

y(x) =
∞∑

k=0
ak (x −x0)k (4.56)

2. the radius of convergence of the series solution is at least the distance from x0 to the nearest singularity of the coefficient
functions P j (x).

The point x0 is a singular point of the ODE (4.55), if at least one of the coefficient functions is not analytic near x0. Then the general
solution may not be analytic near x0.

The point x0 is a regular singular point of the ODE (4.55), if not all of the coefficient functions are analytic near x0, but instead the
modified coefficients

p j (x) := P j (x)(x −x0)n− j (4.57)

are all analytic near x0. Otherwise x0 is an irregular singular point.

For the point at infinity, we change the variable t = 1/x, ỹ(t ) = y(x). We say that x = ∞ is a ordinary/regular singular/irregular
singular point of (4.55) for y(x), if t = 0 is a ordinary/regular singular/irregular singular point of the ODE for ỹ(t ).

4.2 Indicial Equation

We restrict attention to regular singular points of second-order ODEs. If x = x0 is a regular singular point, then the ODE has the
form

L y(x) = y ′′(x)+ p(x)

x −x0
y ′(x)+ q(x)

(x −x0)2 y(x) = 0 (4.58)

where p(x), q(x) are analytic near x0, and can be expanded into power series:

p(x) =
∞∑

k=0
pk (x −x0)k ; q(x) =

∞∑
k=0

qk (x −x0)k (4.59)

9



We seek a solution in the form of Frobenius series

y(x) =
∞∑

k=0
ak (x −x0)α+k (4.60)

with coefficients ak to be determined. We shall set a0 6= 0 by choosing α appropriately.

We substitute (4.60) into (4.58) and equate the coefficients. At the lowest power (x−x0)α−2, using the condition that a0 6= 0 we obtain
that

F (α) :=α(α−1)+p0α+q0 = 0 (4.61)

which is called the indicial equation. The roots α1, α2 of F (α) are called indicial exponents. We order them such that Reα1 Ê
Reα2.

4.3 First Series Solution

The coefficients of (x −x0)k+α−2 satisfy

F (α+k)ak =−
k−1∑
j=0

((α+ j )pk− j +qk− j )a j (4.62)

We take α=α1. Then F (α+k) 6= 0 for k ∈Z+. By rearrangement we obtain the recurrence relation

ak =− 1

F (α1 +k)

k−1∑
j=0

((α1 + j )pk− j +qk− j )a j (4.63)

By solving a1, a2, a3, ... successively we obtain the first series solution

y1(x) = (x −x0)α1
∞∑

k=0
ak (x −x0)k (4.64)

where a0 6= 0 can be chosen arbitrarily.

4.4 Second Series Solution: α1 −α2 ∉Z
For the second series solution, ifα1−α2 ∉Z, then F (α2+k) 6= 0 for k ∈Z. Similar to the first series solution, we obtain the Frobenius
series

y2(x) = (x −x0)α2
∞∑

k=0
bk (x −x0)k (4.65)

with coefficients bk satisfying the recurrence relations

bk =− 1

F (α2 +k)

k−1∑
j=0

((α2 + j )pk− j +qk− j )b j (4.66)

and b0 6= 0 can be chosen arbitrarily.

4.5 Second Series Solution: α1 =α2

When α1 =α2, F (α) has a double root α1.

Derivative Method: From the first series solution (with a0 = 1)

y1(x) = (x −x0)α1 +
∞∑

k=1
ak (x −x0)α1+k (4.67)

we consider the series

y(x;α) = (x −x0)α+
∞∑

k=1
ak (α)(x −x0)α+k (4.68)

where α is a parameter. We can deduce that

y2(x) = ∂

∂α
y(x;α)

∣∣∣∣
α=α1

(4.69)

is a solution to (4.58). The explicit form is

y2(x) = y1(x) ln(x −x0)+ (x −x0)α1
∞∑

k=0
bk (x −x0)k (4.70)

where bk = a′
k (α1).

In practice, it is easier to solve bk by substituting (4.70) into (4.58) to obtain the recurrence relations for bk .
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4.6 Second Series Solution: α1 −α2 ∈Z+
Suppose that α1 −α2 = N > 0. From the Frobenius method, the coefficient of (x −x0)α2+N−2 satisfies

F (α2 +N )bN =−
N−1∑
j=0

((α2 + j )pN− j +qN− j )b j (4.71)

1. If the RHS of equation (4.71) is non-zero, then the Frobenius method fails. To get a second solution, we again use the derivative
method and try the solution of the form

y2(x) = y1(x) ln(x −x0)+ (x −x0)α2
∞∑

k=0
bk (x −x0)k (4.72)

Note that the indicial exponent here is α2 instead of α1.

2. If the RHS of equation (4.71) is zero, then there is no contradiction, and bN can be chosen arbitrarily. In this case we obtain
the second series solution

y2(x) = (x −x0)α2
∞∑

k=0
bk (x −x0)k (4.73)

where b0 6= 0 and bN can be chosen arbitrarily. Since α2 +N =α1, changing bN just corresponds to adding multiples of y1.

(In practice, it is convenient to choose b0 = 1 and bN = 0.)

Remark. In practice, if we obtain the closed form of the first solution using the Frobenius method, then the second solution can
also be obtained by reduction of order introduced in Section 1.3.

5 Special Functions

5.1 Bessel Functions

Consider the Helmholtz equation:
∇2u +λu = 0 (5.74)

By separation of variables in the cylindrical coordinates, we obtain the ODE satisfied by the radial component:

1

r

d

dr

(
r

dRn

dr

)
+

(
λ− n2

r 2

)
Rn(r ) = 0 (5.75)

We eliminate λ by the rescaling R(r ) = y(x) with x = r
p
λ, resulting in

x2 y ′′(x)+x y ′(x)+ (x2 −n2)y(x) = 0 (5.76)

which is known as the Bessel’s equation of order n.

Bessel’s equation has a regular singular point at x = 0, with indicial equation

F (α) =α2 −n2 = 0 (5.77)

The indicial exponents are α1 = n, α2 =−n. (When n = 0, the indicial equation has double roots α1 =α2 = 0.)

The first Frobenius series solution, with a specific normalisation of the leading coefficient in the expansion, defines the Bessel
functions of first kind

Jn(x) =
( x

2

)n ∞∑
k=0

(−1)k

k !Γ(k +n +1)

( x

2

)2k
(5.78)

We are only interested in the case when n ∈Z. Then the second solution can be given by the derivative method. A specifically chosen
normalisation defines the Bessel functions of second kind or Neumann functions:

Yn(x) = 2

π
ln

( x

2

)
Jn(x)− 1

π

(
2

x

)n n−1∑
k=0

(n −k −1)!

k !

(
x2

4

)k

− 1

π

( x

2

)n ∞∑
k=0

ψ(k +1)+ψ(n +k +1)

k !(n +k)!

(
−x2

4

)k

(5.79)

where the digamma function ψ(m) =−γ+
m−1∑
k=1

1

k
for m ∈Z+ and γ is the Euler’s constant.

Some properties of Bessel functions:
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1. Jn and Yn have infinite radius of convergence.

2. Each of Jn and Yn has an infinite set of discrete zeros in x > 0. These zeros are labelled in order by jn,1, jn,2, ... and yn,1, yn,2, ....

3. Behaviour of Bessel functions as x → 0:

Jn(0) = 0 for n > 0 and J0(0) = 1;

Yn(x) =O(x−n) for n > 0 and Y0(x) =O(ln x).

4. From the series expansion we can derive the following recurrence relations:

Jn+1(x) = 2n

x
Jn(x)− Jn−1(x), Jn+1(x) =−2J ′n(x)+ Jn−1(x) (5.80)

The same relations hold for Yn .

Now we consider a physical problem of finding the normal modes of the oscillation on a circular drum. We impose the boundary
conditions on the ODE (5.75):

Rn(r ) is bounded as r → 0; Rn(a) = 0. (5.81)

which leads to the eigenvalues

λ= j 2
n,m

a2 , n ∈N, m ∈Z+ (5.82)

with corresponding eigenfunctions

Rn,m(r ) = Jn

(
jn,m

a
r

)
(5.83)

The normal frequencies are ωn,m = jn,m
c

a
.

By rescaling r we now assume that a = 1. The equation (5.75) can be put into Sturm-Liouville form by multiplying r :

− d

dr

(
r

dRn

dr

)
+ n2

r
Rn(r ) =λr Rn(r ) (5.84)

with eigenvalues and corresponding eigenfunctions

λn,m = j 2
n,m , Rn,m(r ) = Jn( jn,mr ) (5.85)

from which we can derive the orthogonality relations∫ 1

0
Jn( jn,`r )Jn( jn,mr )r dr = 0 for ` 6= m (5.86)

and ∫ 1

0
Jn( jn,mr )2r dr = 1

2

(
J ′n( jn,m)

)2 (5.87)

5.2 Legendre Functions

By separation of variables of the Helmholtz equation in the spherical coordinates, we obtain the ODE satisfied by the azimuthal
component:

1

sinθ

d

dθ

(
sinθ

dΘ

dθ

)
+

(
λ− m2

sin2θ

)
Θ(θ) = 0 (5.88)

Change of variable Θ(θ) = y(x) with x = cosθ. We obtain the associated Legendre equation

d

dx

(
(1−x2)

dy

dx

)
+

(
λ− m2

1−x2

)
y(x) = 0 (5.89)

The solutions are called the associated Legendre functions. When m = 0, we have the Legendre equation

d

dx

(
(1−x2)

dy

dx

)
+λy(x) = 0 (5.90)

The solutions are called the Legendre functions.
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The associated Legendre equation has regular singular points at x = ±1 and x = ∞. The indicial exponents for x = ±1 are m/2
and −m/2. [−1,1] is a natural interval for the associated Legendre equation and we can pose it as a singular Sturm-Liouville prob-
lem:

− d

dx

(
(1−x2)

dy

dx

)
+ m2

1−x2 y(x) =λy(x) for −1 < x < 1; y(x) is bounded as x →±1 (5.91)

The eigenvalues are given byλ= `(`+1) with integer `Ê m Ê 0, corresponding to eigenfunctions P m
`

(x). The orthogonality relations
are ∫ 1

−1
P m

k (x)P m
` (x) = 0 for k 6= ` (5.92)

For m = 0 and ` Ê 0, the Legendre functions P`(x) := P 0
`

(x) are polynomials of degree `. The Legendre polynomials are given
explicitly by the Rodrigues’ formula:

P`(x) = 1

2``!

d`

dx`
(x2 −1)` (5.93)

More explicitly,

P`(x) = ∑̀
n=0

1

(n!)2

(`+n)!

(`−n)!

(
x −1

2

)n

(5.94)

The orthogonality relation of P`(x) ∫ 1

−1
P`(x)2 dx = 2

2`+1
(5.95)

The recurrence relations satified by P`(x):

(2`+1)xP`(x) = (`+1)P`+1(x)+`P`−1(x); (5.96)

P ′
`+1(x) = xP ′

`(x)+ (`+1)P`(x) (5.97)

The associate Legendre functions and the Legendre polynomials are related by

P m
` (x) = (−1)m (

1−x2)m/2 dm

dxm P`(x) (5.98)

Then P m
`

(x) is a polynomial if and only if m is even. Combining (5.98) with the Rodrigues’ formula we obtain

P m
` (x) = (−1)m

2``!

(
1−x2)m/2 d`+m

dx`+m

(
x2 −1

)`
(5.99)

for which we obtain ∫ 1

−1
P m
` (x)2 dx = 2(`+m)!

(2`+1)(`−m)!
(5.100)

The recurrence relations satified by P m
`

(x):

(2`+1)xP m
` (x) = (`−m +1)P m

`+1(x)+ (`+m)P m
`−1(x) (5.101)

A second, linearly independent solution of the Legendre equation with m = 0 is given by the Legendre function of second kind,
denoted by Q`(x), which are unbounded as x →±1. For `= 0,

Q0(x) = 1

2
ln

(
1+x

1−x

)
(5.102)

Similar to the first kind, the associated Legendre functions of second kind are given by

Qm
` (x) = (−1)m (

1−x2)m/2 dm

dxm Q`(x) (5.103)

5.3 Orthogonal Polynomials

There are other families of orthogonal polynomials, which are solutions to some second-order linear ODEs, satisfying the orthogo-
nality relations

〈pm , pn〉r :=
∫ b

a
pm(x)pn(x)r (x)dx = 0 for m 6= n (5.104)

for some weighting function r (x).

These orthogonal polynomials can also be obtained by applying Gram-Schmidt orthogonalisation process to the set {1, x, x2, ...} with
respect to certain inner product on the interval [a,b], and also by considering the generalised Rodrigues’ formula:

pn(x) = 1

knr (x)

dn

dxn

(
r (x)X n)

, where X =


(b −x)(a −x), |a|, |b| <∞
x −a, |a| <∞,b =∞
1, −a = b =∞

(5.105)

where kn is some constant. The following table provides a full classification of orthogonal polynomials:
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Orthogonal Polynomials 2nd-order Linear ODE [a,b] X r (x) α,β

Jacobi P (α,β)
n

(1−x2)y ′′(x)+ (a +bx)y ′(x)+λy(x) = 0 [−1,1] x2 −1

(1−x)α(x +1)β α,β>−1

Gegenbauer P (α,α)
n (1−x)α(x +1)α α,β=−1

Chebyshev T (±)
n (1−x)±1/2(x +1)±1/2 α,β=±1/2

Legendre Pn 1 α,β= 0

Associated Laguerre Lαn
x y ′′(x)+ (α+1−x)y ′(x)+λy(x) = 0 [0,+∞) x

e−x xα α>−1

Laguerre Ln e−x α= 0

Hermite Hn y ′′−2x y ′(x)+λy(x) = 0 (−∞,+∞) 1 e−x2

6 Asymptotic Analysis

6.1 Asymptotic Expansion

We say that f (x) = O(g (x)) or f is of order g as x → x0, if

∃δ> 0 ∃ A > 0 ∀x ∈ (x0 −δ, x0 +δ) | f (x)| < A|g (x)| (6.106)

We say that f (x) ∼ g (x) or f is asymptotic to g as x → x0, if

lim
x→x0

f (x)

g (x)
= 1 (6.107)

We say that f (x) = o(g (x)) or f (x) ¿ (g (x)) as x → x0, if

lim
x→x0

f (x)

g (x)
= 0 (6.108)

We are particularly interested in the behaviour of f (ε) as ε→ 0.

A sequence of functions {ϕk (ε)}k∈N is an asymptotic sequence as ε→ 0, if ϕk+1(ε) = o(ϕk (ε)) for each k ∈N as ε→ 0.

A function f (ε) has asymptotic expansion of the form

f (ε) ∼∑
k

akϕk (ε) as ε→ 0 (6.109)

if

1. the gauge functions ϕk form an asymptotic sequence;

2. f (ε)−
N∑

k=0
akϕk (ε) = o(ϕN (ε)) for N ∈N as ε→ 0.

Some properties of asymptotic expansion:

1. Given a sequence of gauge functions {ϕk }, the coefficients ak are unique;

2. The function defines the expansion but not vice versa.

Remark. We have e1/ε = o(εk ) as ε→ 0 for all k > 0. e1/ε is said to be exponentially small or transcendentally small.

6.2 Approximate Roots of Algebraic Equations

In this section we consider algebraic equations of the form f (x;ε) = 0. We are interested in the asymptotic expansion of the solutions
in the limit ε→ 0. The general method can be summarised as follows:

1. Scale the variable to get a dominant balance, so that at least two of the terms balance and are much larger than the remaining
terms in the equation.
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2. Plug in an asymptotic expansion x =∑
k xkϕk (ε), whose form is usually clear from the equation.

For example, if f (x,ε) is a rational function in x and ε, we normally will try

x = x0 +x1ε+x2ε
2 +x3ε

3 +·· · (6.110)

3. By equating the coefficients of each gauge function ϕk (ε), obtain the coefficients x0, x1, x2, ... in the expansion.

4. Repeat for any other possible dominant balances in the equation to obtain approximations for other roots.

We illistrate the process in the following example:

Example 6.1

Solve approximately the quadratic equation
εx2 +x −1 = 0 (6.111)

in the limit as ε→ 0.

Solution. First we try to balance the terms x and −1, which implies that x = O(1). We seek the asymptotic expansion

x = x0 +x1ε+x2ε
2 +x3ε

3 +O(ε4) (6.112)

By equating the terms O(1), O(ε), O(ε2) and O(ε3), we can solve x0, x1, x2 and x3 successively. The approximation of this root
is

x+ ∼ 1−ε+2ε2 −5ε3 +O(ε4) (6.113)

Second, we try to balance the terms εx2 and 1, which suggests that x = O(ε−1/2). But now x is much larger than εx2 and 1. So
we will have a problem.

Third, we try to balance the terms εx2 and x, which suggests that x = O(ε−1). We use the scaling x = ε−1 y . Then the equation
becomes

y2 + y −ε= 0 (6.114)

We seek the asymptotic expansion
y = y0 + y1ε+ y2ε

2 + y3ε
3 +O(ε4) (6.115)

By equating the terms we solve y0, y1, y2 and y3 successively. The approximation for x is

x− ∼−ε−1 −1+ε−2ε2 +O(ε3) (6.116)

Finally, we observe that the asymptotic expansions of x± agree with the asymptotic expansion of the exact solution

x± = −1±p
1+4ε

2ε
(6.117)

near ε= 0.

The example above is a singular perturbation problem because setting ε= 0 reduces the degree of the problem.

6.3 Regular Perturbations in ODEs

We consider ODEs of the form f (y, y ′, ..., y (n); x;ε) = 0. We are interested in the asymptotic expansion of the solutions y(x;ε) in the
limit ε→ 0. We will not summary the general method but instead present an example to illistrate the process.

Example 6.2. Small Oscillation of a Pendulum

Solve approximately the initial value problem

y ′′(x)+ sin(εy(x))

ε
= 0 y(0) = 0, y ′(0) = 1 (6.118)
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Solution. From the Taylor exapnsion of sin(εy(x)) we observe that the problem only contains even powers of ε. So we seek a solution
of the form

y(x;ε) = y0(x)+ε2 y2(x)+O(ε4) (6.119)

By equating the terms O(1) and O(ε2) we obtain the equations satisfied by y0 and y2:

O(1) : y ′′
0 + y0 = 0 y0(0) = 0, y ′

0(0) = 1 (6.120)

O(ε2) : y ′′
2 + y2 =

y3
0

6
y2(0) = 0, y ′

2(0) = 1 (6.121)

From which we obtain the asymptotic expansion of the solution:

y(x;ε) ∼ sin x +ε2
(

3

64
sin x + 1

192
sin3x − 1

16
x cos x

)
+O(ε4) (6.122)

Note that the expansion is valid when x = O(1). When x = O(ε−2), the expansion becomes non-uniform as the second term becomes
the same order as the leading term. In this problem, the non-uniformity arises from the secular term proportional to x cos x. In gen-
eral, we expect to find a secular term in the solution whenever the right hand-side of (6.121) contains a term in the complementary
function.

6.4 Boundary Layers in IVP

For a ODE like Example 6.2, the regular asymptotic expansion

y(x) = y0(x)+εy1(x)+ε2 y2(x)+·· · (6.123)

may only be valid for a limited range of values of x. In addition, it is not clear how to determine the solution uniquely if a boundary
condition is imposed in a region where the asymptotic expansion is not valid, which called a boundary layer.

For a problem involving boundary layers, we use the method of matched asymptotic expansion. We construct two different asymp-
totic expansions for the solution, one in the outer region, which is the outer expansion, and the other in the boundary layer, which
is the inner expansion. Then we join them up as a composite expansion by asymptotic matching:

Composite Expansion = Inner Expansion+Outer Expansion−Common Limit

We illistrate the process by considering a singular perturbation problem:

Example 6.3

Solve approximately the initial value problem for x > 0:

εy ′(x)+ y(x) = e−x y(0) = 0 (6.124)

Solution. First we consider x = O(1). We try y(x) = y0(x)+εy1(x)+ε2 y2(x)+·· · . The leading-order term y0:

y0(x) = e−x (6.125)

cannot satisfy the condition y0(0) = 0. We recognise that there is a boundary layer near x = 0. So y0(x) = e−x is the outer
expansion.

To obtain the inner expansion we have to rescale x to get a dominant balance for the equation. We set x = δX and y(x) = Y (X )
where δ¿ 1 is to be determined. The problem becomes

ε

δ
Y ′(X )+Y (X ) = e−δX , Y (0) = 0 (6.126)

We can balance all three terms by setting δ= ε. This corresponds to x = O(ε). The equation in the inner region becomes

Y ′(X )+Y (X ) = e−εX ∼ 1−εX +·· · (6.127)

We try Y (x) = Y0(x)+εY1(x)+ε2Y2(x)+·· · . The leading order satifies

Y ′
0(X )+Y0(X ) = 1 Y0(0) = 0 (6.128)

which is solve by Y0(X ) = 1−e−X . THis gives the inner expansion.
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The leading-order matching principle is demonstrated by

lim
x→0

y0(x) = lim
X→∞

Y0(X ) = 1 (6.129)

Hence the composite expansion is given by

ycomp(x) = y0(x)+Y0(X )−1 = e−x −e−x/ε (6.130)

6.5 Boundary Layers in BVP

For a general second-order linear ODE

εy ′′(x)+P1(x)y ′(x)+P2(x)y(x) = R(x), x ∈ (a,b) (6.131)

with boundary conditions given at x = a and x = b. Assume that P0, P1 and R are smooth and bounded, and that P1(x) 6= 0 and does
not change sign in the interval x ∈ [a,b]. Then the boundary layer is at

1. the left-hand boundary x = a, it P1(x) > 0;

2. the right-hand boundary x = b, it P1(x) < 0.

(assuming that ε→ 0+.)

Once we locate the boundary layer, we can apply the process described in Section 6.4 to obtain the inner and outer expansion.
Usually the inner expansion will contain an integrating constant, which should be determined by the matching principle.

For more complicated situations, the boundary layers may

1. appear at both ends of the domain, or

2. appear in the intermediate region, or

3. appear nested, with one boundary layer inside another one.

The difficulties arise in these situations can be

1. It may not be clear where to look for boundary layers;

2. The boundary layers may require the rescaling of the dependent variable y as weel as the independent variable x;

3. We may have to solve the full ODE with no simplification.

6.6 Poincaré-Lindstedt Method

For problems of slowly varying oscillations (including the example 6.2), we seek periodic solution and want to suppress the sec-
ular terms. We can use the Poincaré-Lindstedt method, which is a simplified version of the more general method of multiple
scales.

Example 6.4

Solve the initial value problem for x > 0

y ′′(x)+ (1+ε)y(x) = 0, y(0) = 1, y ′(0) = 0 (6.132)

Solution. Make the substitution X =ωx where the frequency ω(ε) is not known in advanced. The problem becomes

ω2Y ′′(X )+ (1+ε)Y (X ) = 0, Y (0) = 1, Y ′(0) = 0 (6.133)

We expand both y and ω in powers of ε:

Y (X ) ∼ Y0(X )+εY1(X )+O(ε2) ω∼ 1+εω1 +O(ε2) (6.134)

At O(1), we obtain that Y0(X ) = cos X . At O(ε), we find that Y1(X ) satisfies

Y ′′
1 (X )+Y1(X ) =−2ω1Y ′′

0 (X )−Y0(X ) = (2ω1 −1)cos X Y1(0) = Y ′
1(0) = 0 (6.135)

We must eliminate the resonant term (2ω1 − 1)cos X , so we set ω1 = 1/2. Thus the oscillation frequency is given by the
asymptotic expansion

ω= 1+ 1

2
ε+O(ε2) (6.136)

which agrees with the expansion of the exact solution

y(x) = cos
(p

1+εx
)

(6.137)
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6.7 WKB Approximation

When the small parameter multiplies the highest derivative in an ODE, it does not always lead to the formation of boundary layers,
but is also possible for the solution to exhibit rapid oscillations instead. We can use the WKB approximation. This method is
particularly useful for analysing the Schrödinger equation in the semi-classical limit.

We concern ODEs in the form
ε2 y ′′(x)+Q(x)y = 0 (6.138)

with Q(x) 6= 0 in the domain of interest. We assume a WKB asymptotic expansion in the form

y(x) = A(x;ε)eiu(x)/ε (6.139)

where both the phase u(x) and the amplitude A(x;ε) are to be determined. The equation is transformed to(
Q(x)−u′(x)2) A(x)+ iε

(
2u′(x)A′(x)+u′′(x)A(x)

)+ε2 A′′(x) = 0 (6.140)

At leading order O(1), we get the eikonal equation u′(x)2 =Q(x) so the phase is given by

u(x) =±
∫ x √

Q(t )dt (6.141)

We consider a regular asymptotic expansion of A(x;ε) ∼ A0(x)+εA1(x)+O(ε2). The leading-order amplitude satisfies

2A′
0(x)

A0(x)
+ u′′(x)

u′(x)
= 0 (6.142)

which solves into
A0(x) = const ·Q(x)−1/4 (6.143)

Therefore at leading order, the approximate solution is given by

y(x) ∼Q(x)−1/4
(
C1 exp

(
i

ε

∫ x √
Q(t )dt

)
+C2 exp

(
− i

ε

∫ x √
Q(t )dt

))
as ε→ 0 (6.144)

At the point x = xe where Q(xe ) = 0, we observe that A(x) →∞ as x → xe . Such points where the WKB approximation breaks down
are called classical turning points. At the turning points we must consider inner expansions and match them with the outer WKB
expansion.

7 Dirac δ-Function and Distributions

7.1 Test Functions and Distributions

f :R→R is said to be locally (Lebesgue) integrable, if it is (Lebesgue) integrable on any compact subset of R.

A map φ :R→R is a test function, if it is smooth with compact support. A simple example of test function is

φ(x) =
exp

(
C

(x −a)(x −b)

)
, x ∈ (a,b);

0, otherwise.
(7.145)

The set of test functions forms a vector space D.

Convergence in D: We say that a sequence of test functions {φn}n∈N converges to φ in D, if:

1. there exists R > 0 such that φ(x) =φn(x) = 0 for all |x| > R and n ∈N;

2. φ(k)
n converges uniformly to φ(k) for all derivatives k ∈N.

We denote it by φn
D−→φ.

A distribution or generalised function F is a continuous linear functional from D toR. The continuity of F is in the sense that

φn
D−→φ =⇒ F (φn) → F (φ) (7.146)

The set of distributions forms a vector space D′, which is a subspace of the dual space of D.

It is common to use the "inner product" 〈F,φ〉 to denote F (φ).
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Theorem 7.1

Suppose that f :R→R is a continuous function such that∫ +∞

−∞
f (x)φ(x)dx = 0 (7.147)

for all φ ∈D. Then f = 0.

Given a locally integrable function f :R→R, we can define a distribution F f by

F f : φ 7→
∫ +∞

−∞
f (x)φ(x)dx (7.148)

Such distributions are called regular distributions. Note that the above theorem shows that the map f 7→ F f restricted to continu-
ous functions is injective.

The distributions that are not regular are called singular distributions.

Convergence in distribution: We say that a sequence of distributions {Fn}n∈N converges to Fn in D′, if

lim
n→∞〈Fn ,φ〉 = 〈F,φ〉 (7.149)

for all φ ∈D. We denote it by Fn
D′
−→ F .

For F ∈D′ and a ∈R, we define the translation of F through a to be the distribution given by

F (x −a) : φ(x) 7→ 〈F (x),φ(x +a)〉 (7.150)

For regular distribution F f , this corresponds to a change of variable in the integral:

〈 f (x −a),φ(x)〉 =
∫ +∞

−∞
f (x −a)φ(x)dx =

∫ +∞

−∞
f (x)φ(x +a)dx = 〈 f (x),φ(x +a)〉 (7.151)

For F ∈D′ and f ∈ C∞(R), we define the distribution f F to be

f F : φ 7→ 〈F, f φ〉 (7.152)

For F ∈D′, we define the distributional derivative of F to be the distribution:

F ′ : φ 7→ −〈F,φ′〉 (7.153)

For regular distribution F f , this corresponds to integration by parts:

〈 f ′,φ〉 =
∫ +∞

−∞
f ′(x)φ(x)dx = f (x)φ(x)

∣∣∣∣+∞−∞−
∫ +∞

−∞
f (x)φ′(x)dx =−〈 f ,φ′〉 (7.154)

As test functions are infinitely differentiable, the distributions are all "infinitely differentiable".

The product rule ( f F )′ = f ′F + f F ′ holds for distributional derivatives.

All distributions G have antiderivative F such that G = F ′: Fix φ1 ∈ D such that
∫ +∞

−∞
φ1(x)dx = 1. Given a test function φ we can

write
φ= Kφ1 +φ0 (7.155)

where K =
∫ +∞

−∞
φ(x)dx and φ0 ∈D such that

∫ +∞

−∞
φ0(x)dx = 0. Define

ψ(x) =
∫ x

−∞
φ0(t )dt (7.156)

Then ψ ∈D and ψ′ =φ0. We then can define F by
F : φ 7→ −〈G ,ψ〉 (7.157)
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7.2 δ-Function

Informally, δ-function δ :R→R is defined to be a function with the properties

δ(x) = 0 for x 6= 0;
∫ +∞

−∞
δ(x)dx = 1 (7.158)

We know that such function does not exist by Lebesgue integration theory. However, in modern math we define the δ-function to
be the singular distribution:

δ : φ 7→φ(0) (7.159)

The relation is often represented (incorrectly) by an integral:∫ +∞

−∞
φ(x)δ(x)dx =φ(0) (7.160)

The translation of δ through a ∈R is the distribution

δ(x −a) : φ 7→φ(a) (7.161)

which is represented by the integral: ∫ +∞

−∞
φ(x)δ(x −a)dx =φ(a) (7.162)

The Heaviside function H is defined to be the distribution:

H : φ 7→
∫ ∞

0
φ(x)dx (7.163)

which is a regular distribution of the real functions χ[0,∞) or χ(0,∞).

It is easy to show that δ is the distributional derivative of H . On the other hand, the derivative of δ is the distribution:

δ′ : φ 7→ −φ′(0) (7.164)

This can also be found by the ordinary definition of derivative:

δ′(x) = lim
h→0

δ(x +h)−δ(x)

h
(7.165)

δ-function can be approximated by a sequence of functions, which can be generated by the following theorem

Theorem 7.2

Suppose that f : R→ R is integrable with
∫ +∞

−∞
f (x)dx = 1. For ε > 0 we define fε(x) := ε−1 f (x/ε). Then we have F fε

D′
−→ δ as

ε→ 0.

Some common examples are

1p
2πε

exp

(
− x2

2ε2

)
D′
−→ δ as ε→ 0

1

2ε
χ(−ε,ε)

D′
−→ δ as ε→ 0 (7.166)

Let g ∈ C1(R). We can define the define the distribution δ(g (x)) to be the distributional limit of F fε◦g as ε→ 0, where fε is defined in
Theorem 7.2.

Theorem 7.3. Composition of Delta Function with a Function

Suppose that g ∈ C1(R) and that R can be expressed as an at most countable union of disjoint intervals Iα such that each g |Iα
is invertible. In addition we assume that all roots of g are simple. Then we have

δ(g (x)) = ∑
a∈g−1({0})

1

|g ′(a)|δ(x −a) (7.167)

As a direct corollary, we have:

δ(ax) = 1

|a|δ(x), δ(x2 −a2) = 1

2|a| (δ(x +a)+δ(x −a)) (7.168)
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8 Laplace Transform

8.1 Basic Properties

For f : (0,∞) →C and p ∈C such that f (x)e−px ∈ L1(0,∞), we define the Laplace transform f (p) of f (x) to be

f (p) :=
∫ ∞

0
f (x)e−px dx (8.169)

f is also denoted by L [ f ], where L is an integral operator that represents Laplace transform.

Theorem 8.1. Existence of Laplace Transform

Suppose that f : [0,∞) is measurable and there exist constants M , x0,c ∈ R such that | f (x)| É M ecx a.e. for x Ê x0. Then f (p)
exists for all Re(p) > c.

Theorem 8.2. Watson’s Lemma

Suppose that f : [0,∞] → C is continuous and the Laplace transform f (p) of f (x) exist for some p0 ∈ C. Then the asymptotic
behaviour of f as Re p →∞ is given by

f (p) ∼ f (0)

p
+O(p−2) (8.170)

Some basic properties of Laplace transform are summarised as follows: (we assume that the transformed functions exist and that f
is sufficiently smooth and well-behaved as x → 0)

1. L is linear: L [a f (x)+bg (x)] = aL [ f (x)]+bL [g (x)] for a,b ∈C;

2. L [ f (x)e−ax ] = f (p +a) for a ∈C;

3. L [ f ′(x)] = p f (p)− f (0);

4. L [ f ′′(x)] = p2 f (p)−p f (0)− f ′(0);

5. L [ f (n)(x)] = pn f (p)−
n∑

k=1
pn−k f (k−1)(0) for n ∈N;

6. L [x f (x)] =−d f

dp
;

7. L [xn f (x)] = (−1)n dn f

dpn for n ∈N;

8. L
[

f (x −a)H(x −a)
]= e−ap f (p), where H(x) is the Heaviside function and a > 0.

8.2 Summary of Laplace Transforms of Common Functions

1. L [1] = 1/p for Re p > 0;

2. L [x] = 1/p2 for Re p > 0;

3. L [xa] = Γ(a +1)/pa+1 for Re p > 0, where a >−1;

4. L [eax ] = 1/(p −a) for Re p > Re a, where a ∈C;

5. L [cos ax] = p/(p2 +a2) for Re p > | Imω|, where a ∈C;

6. L [sin ax] = a/(p2 +a2) for Re p > | Imω|, where a ∈C;

7. L [δ(x −a)] = e−ap , where a > 0;

8. L [J0(x)] = (1+p2)−1/2, where J0(x) is the Bessel function of first kind of order zero.

These formulae are particularly useful for finding the inverse Laplace transform of common functions.
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8.3 Convolution and Inversion

For functions f , g whose Laplace transform exists for Re p > c, we define the convolution f ∗ g by

( f ∗ g )(x) =
∫ x

0
f (t )g (x − t )dt (8.171)

Theorem 8.3. Convolution Theorem for Laplace Transform

The Laplace transform of the convolution of f and g is the product of the Laplace transform of f and g :

L [ f ∗ g ] =L [ f ] ·L [g ] (8.172)

Theorem 8.4. Injectivity of Laplace Transform

Suppose that f : [0,∞) →C is continuous and bounded by M ecx . If f (p) = 0 for Re(p) > c, then f = 0.

Theorem 8.5. Inversion Theorem for Laplace Transform

Suppose that f : (0,∞) →C is piecewise smooth and f (p) exists for Re(p) > c. Then for x > 0,

f (x) = 1

2πi

∫ σ+i∞

σ−i∞
f (p)epx dp (8.173)

for some σ> c.

From the inversion theorem we can deduce the term-by-term Laplace inversion: Let f : [0,∞) → C be a function that is analytic
near x = 0. Assume that

f (p) =
∞∑

n=0

an

pn+1 for Re(p) > c Ê 0 (8.174)

Then

f (x) =
∞∑

n=0

an xn

n!
(8.175)

The common techniques for Laplace inversion are summarised below:

1. Use the properties and common results in Section 8.1 and 8.2, and the convolution theorem.

2. Directly compute the contour integral in the inversion theorem;

3. Expand the function into Laurent series and use the term-by-term Laplace inversion.

For a linear ODE for y(x) with y(0) specified, we can apply the Laplace transform to the equation. If the coefficients of y(x) are
constants, then the transformed problem is an algebraic equation of y(p); if the coefficients of y(x) are polynomials in x, then he
transformed problem is an ODE of y(p). We can solve y(p) and apply the inverse Laplace transform to find the solution y(x).

9 Fourier Transform

9.1 Basic Properties, Examples, Convolution and Inversion

Let f ∈ L1(R). We define the Fourier transform f̂ (s) of f (x) to be

f̂ (s) =
∫ +∞

−∞
f (x)e−isx dx (9.176)

f̂ is also denoted by F [ f ], where F is an integral operator that represents Fourier transform.

Remark. There are many other definitions of Fourier transform of f in various texts, like∫ +∞

−∞
f (x)eisx dx, or

1p
2π

∫ +∞

−∞
f (x)e−isx dx, or

∫ +∞

−∞
f (x)e−2πisx dx (9.177)
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Theorem 9.1. Riemann-Lebesgue Lemma

Suppose that f ∈ L1(R). Then f̂ (s) → 0 as |Re(s)|→∞.

Some basic properties of Fourier transform are summarised as follows: (assume all functions in L1(R), and sufficiently smooth if
necessary)

1. F is linear: F [a f (x)+bg (x)] = aF [ f (x)]+bF [g (x)] for a,b ∈C;

2. F [ f (x/a)] = a f̂ (sa) for a > 0;

3. F
[
e−isa f (x)

]= f̂ (s +a) for a ∈R;

4. F
[

f n(x)
]= (is)n f̂ (s);

5. F
[
xn f (x)

]= in dn f̂

dsn .

Summary of Fourier transforms of some common functions:

1. Indicator function: F
[
χ[−1,1]

]= 2sin s

s
;

2. δ-function: F [δ(x −a)] = e−isa , where a ∈R;

3. Exponential function: F
[
e−a|x|]= 2a

a2 + s2 , where a > 0;

4. Gaussian function: F
[

e−a2x2
]
=

p
π

a
exp

(
− s2

4a2

)
, where a > 0;

5. Constant function: F [1] = 2πδ(s).

Note that the F [1] = 2πδ(s) should only be understood in the sense of distributions, in which we have to work on a larger class of
test function. This is beyond the scope of this course.

Theorem 9.2. Convolution Theorem for Fourier Transform

For f , g ∈ L1(R), we define the convolution f ? g (note the differnce in the limits!) to be

( f ? g )(x) =
∫ +∞

−∞
f (t )g (x − t )dt (9.178)

Then f ? g ∈ L1(R). In particular, the Fourier transform of the convolution of f and g is the product of the Fourier transform
of f and g :

F
[

f ? g
]=F

[
f
] ·F [

g
]

(9.179)

Theorem 9.3. Inversion Theorem for Fourier Transform

Suppose that f :R→C is continuous and f (x), f̂ (s) ∈ L1(R). Then

f (x) = 1

2π

∫ +∞

−∞
f̂ (s)eisx ds (9.180)

9.2 Fourier Transform in L2(R)

Theorem 9.4. Parseval–Plancherel identity

For f , g ∈ L1(R)∩L2(R), we have

〈 f̂ , ĝ 〉 :=
∫ +∞

−∞
f̂ (s)ĝ (s)ds = 2π

∫ +∞

−∞
f (x)g (x)dx = 2π〈 f , g 〉 (9.181)

As a corollary, we have
∥∥F

[
f
]∥∥

2 = p
2π

∥∥ f
∥∥

2 for f ∈ L1(R)∩L2(R). A slightly modified definition of the Fourier Transform can be
extended to a unitary operator on the inner product space L2(R).
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9.3 Application to PDEs

We consider the Dirichlet problem on the upper half plane:

∂2u

∂x2 + ∂2u

∂y2 = 0 x ∈R, y > 0 (9.182)

with the boundary conditions

u(x,0) = f (x) for some f ∈ L1(R) u(x, y) is bounded as x2 + y2 →∞ (9.183)

We apply Fourier transform to the x-variable. The equation transforms into

ûy y (s, y) = s2û(s, y) (9.184)

with the transformed boundary condition
û(s,0) = f̂ (s) (9.185)

Equation (9.184) is a ODE. The solution is
û(s, y) = f (s)e−y |s| (9.186)

Using the convolution theorem and the known inverse of e−y |s|, we can write the solution as

u(x, y) = y

π

∫ +∞

−∞
f (s)

y2 + (x − s)2 ds (9.187)

which is known as the Poisson’s solution.

10 Calculus of Variations

10.1 Euler-Lagrange Equation

We consider the general problem of finding the function y(x) which gives a stationary value to the functional

I [y] =
∫ b

a
F (x, y, y ′)dx (10.188)

For this problem, we consider a subset of test functions, called bump functions η(x) on [a,b], which satisfy:

1. η(x) = 0 unless x ∈ [a,b];

2. 0 < η(x) É 1 for x ∈ (a,b).

Equation (7.145) with C = 1 is an example of a bump function.

The following theorem is a generalisation of Theorem 7.1:

Theorem 10.1

Suppose that f : [a,b] →R is continuous and c1, c2 are constants such that

c1η(a)+ c2η(b)+
∫ b

a
f (x)η(x)dx = 0 (10.189)

for all bump function η(x) on [a,b]. Then f = 0.

Let y : [a,b] →R be a minimiser of the functional I [y] (either subject to the constraints y(a) = c1 and y(b) = c2, or with no constraints
at all) and η is a bump function on [a,b]. Then we have

d

dα
I [y +αη]

∣∣∣∣
α=0

= 0 (10.190)

from which we can derive the Euler-Lagrange equation for y(x):

d

dx

∂F

∂y ′ −
∂F

∂y
= 0 (10.191)
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If either y(a) or y(b) (or both) are not fixed, then y(x) is subject to the natural boundary conditions
∂F

∂y ′

∣∣∣∣
x=a

= 0 or
∂F

∂y ′

∣∣∣∣
x=b

= 0 (or

both) respectively.

Suppose that
∂F

∂y
= 0. Then y is called an ignorable coordinate of F , in which case we have

∂F

∂y ′ = const (10.192)

Suppose that
∂F

∂x
= 0. Then we have the Beltrami’s identity:

H := y ′ ∂F

∂y ′ −F = const (10.193)

10.2 Application to Mechanics

We generalise the problem to several dependent variables q1(t ), ..., qn(t ). We consider the stationary values of the functional

S[q] :=
∫ b

a
L (t ; q1, ..., qn ; q̇1, ..., q̇n)dt (10.194)

In mechanics, q1, ..., qn are generalised coordinates which are functions of time t , S[q] is called the action, and L (t ; q1, ..., qn ; q̇1, ..., q̇n)
is called the Lagrangian. We have the famous Principle of Least Action:

Principle 10.2. Principle of Least Action

Suppose that a mechanical system is subject to holonomic, workless constraints, and all forces are conservative. Then the
motion of the system (q1(t ), ..., qn(t )) extremise the action

S[q] =
∫ b

a
L (t ; q1, ..., qn ; q̇1, ..., q̇n)dt (10.195)

The principle of least action serves as the fundamental postulate of physics. In classical mechanics, the Lagrangian L = T −V ,
where T and V are the kinetic and potential energy of the mechanical system.

The extremisers q1(t ), ..., qn(t ) satisfy the Euler-Lagrange equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i ∈ {1, ...,n} (10.196)

with either the fixed boundary conditions qi (a) = ci , qi (b) = di , or the natural boundary conditions
∂L

∂q̇i

∣∣∣∣
t=a

= ∂L

∂q̇i

∣∣∣∣
t=b

= 0.

We define the generalised momenta pi := ∂L

∂q̇i
. The ignorable coordinates implies the conservation of generalised momenta:

∂L

∂qi
= 0 =⇒ pi = const, i ∈ {1, ...,n} (10.197)

We define the Hamiltonian

H :=
n∑

i=1
pi q̇i −L =

n∑
i=1

q̇i
∂L

∂q̇i
−L (10.198)

The Beltrami’s identity becomes
∂L

∂t
= 0 =⇒ H = const (10.199)

In other words, the time-independent Lagrangian implies the conservation of Hamiltonian.

The above theorems hint a more general connection between continuous symmetries and conserved quantities:

Theorem 10.3. Noether’s Theorem

We say that the function ρ(t ; q ; q̇) generates a infinitesimal symmetry of the Lagrangian L , if there exists a (sufficiently
smooth) function f (t ; q ; q̇) such that

∂

∂α
L (t ; q +αρ; q̇ +αρ̇)

∣∣∣∣
α=0

= d

dt
f (t ; q(t ); q̇(t )) (10.200)
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for all (sufficiently smooth) q(t ).

Then ρ induces the conserved quantity:

F =
n∑

i=1
ρi
∂L

∂q̇i
− f = const (10.201)

10.3 Generalisations

We generalise the problem to several independent variables y = y(x1, ..., xn). We consider the stationary values of the functional

I [y] =
∫

R
F (x1, ..., xn ; y ; y1, ..., yn)dx1 · · ·dxn (10.202)

where R ⊆Rn is a region and yi := ∂y

∂xi
for i ∈ {1, ...,n}.

The minimisers of I [y] with fixed boundary conditions satisfy the Euler-Lagrange equation:

n∑
i=1

∂

∂xi

∂F

∂yi
− ∂F

∂y
= 0 (10.203)

We can also generalise the problem to include higher derivatives. We consider the stationary values of the functional

I [y] =
∫ b

a
F (x; y, y ′, ..., y (n))dx (10.204)

The minimisers of I [y] satisfy the Euler-Lagrange equation:

n∑
k=0

(−1)k dk

dxk

∂F

∂y (k)
= 0 (10.205)

If n = 2, the natural boundary conditions for this problem are

∂F

∂y ′ −
d

dx

∂F

∂y ′′ = 0
∂F

∂y ′′ = 0 (10.206)

when evaluted at x = a and x = b.

10.4 Integral Constraints

We consider the problem of finding the stationary value of the functional

I [y] =
∫ b

a
F (x, y, y ′)dx (10.207)

subject to an integral constraint

J [y] =
∫ b

a
G(x, y, y ′)dx =C (10.208)

We can introduce a Lagrange multiplier λ so that the minimisers y(x) satisfy the Euler-Lagrange equation for F −λG :

d

dx

(
∂

∂y ′ (F −λG)

)
− ∂

∂y
(F −λG) = 0 (10.209)

Note that in this case the natural boundary conditions will be

∂

∂y ′ (F −λG) = 0 at x = a and x = b (10.210)

10.5 Application to Sturm-Liouville Theory

We notice that the Sturm-Liouville equation

− (p(x)y ′(x))′+q(x)y(x) =λr (x)y(x) x ∈ [a,b] (10.211)
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is the Euler-Lagrange equation for the variational problem of finding stationary values of

I [y] =
∫ b

a

(
p(x)y ′(x)2 +q(x)y(x)2) dx (10.212)

subject to

J [y] =
∫ b

a
r (x)y(x)2 dx = const (10.213)

The corresponding fixed or natural boundary conditions are given respectively by

y = 0 py ′ = 0 (10.214)

evaluted at x = a and x = b.

In particular, an eigenvalue λn and its corresponding eigenfunction yn satisfy that

λn = I [yn]

J [yn]
=

∫ b

a

(
p(x)y ′(x)2 +q(x)y(x)2

)
dx∫ b

a
r (x)y(x)2 dx

(10.215)

from which we may recover some standard results in the Sturm-Liouville theory, for example, the orthogonality relation:∫ b

a
r (x)yn(x)ym(x) = 0 for m 6= n (10.216)

in the eigenfunction expansion
y(x) =∑

i
ci yi (x) (10.217)

An interesting application is the Rayleigh-Ritz approximation or variational principle. Suppose that we have a Sturm-Liouville
problem

L y(x) :=−(p(x)y ′(x))′+q(x)y(x) =λr (x)y(x) (10.218)

and we would like to obtain an upper bound its smallest eigenvalue λ0. We have

λ0 =
〈L y0, y0〉r

〈y0, y0〉r
É 〈L y, y〉r

〈y, y〉r
=

∫ b

a

(
p(x)y ′(x)2 +q(x)y(x)2

)
dx∫ b

a
r (x)y(x)2 dx

(10.219)

for all (sufficiently smooth) y(x) that satisfy the same boundary conditions.

The method ia particularly useful in estimating the upper bound of the ground state energy for a given quantum system.
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