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1 Charge algebras for the classical string

In Hamiltonian mechanics, conserved charges are represented by functions on phase space that Poisson-commute
with the Hamiltonian, and the action of the symmetry on an observable is implemented by the Poisson bracket. In
this exercise, you will calculate the algebra of charges for spacetime Poincaré symmetry and worldsheet conformal
symmetry of the closed string, written in oscillator coordinates on phase space, whose Poisson brackets take the

form
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Question 1.1

Spacetime Poincaré symmetry charges for the closed string are written in terms of oscillator coordinates as
follows:
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Compute the Lie algebra of these charges.
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Proof. Without ambiguity, the Poisson bracket shall be denoted by {—, —}. First we note that p* = Za
So {p#, al,} = {p#, %} = 0 for m # 0.
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Before computing {M", M*?}, we need
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Let E# .= E n= ©— and EMY := E n= % . Similarly for z* and p*,
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The results coincide with the familiar Poincaré algebra. O

Question 1.2

Derive the expression for the conserved charges L,, and Em used to impose the stress tensor constraints on
the string phase space. Verify that their Lie algebra is the Witt algebra,

[Lm, Lulp g, = i(m —n)Liypin.

Show that the transformation of the oscillators under the action of these charges is given by
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Thus deduce the action of L, and L,, on the space-time coordinate fields X H(r,0). Confirm that your

results agree with the action of the vector fields generating worldsheet conformal transformations, V& =
_%e%maiai‘a

“Recall that the vector field £*(z)0, generates a diffeomorphism z* — 2% = ® + £(z).

Proof. The conserved charges are given by
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The derivation is given in the lecture notes. You SMeuld howe_ olw\’e’d‘- Mo o,
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For the computation of the Poisson bracket, we refer to Question 2.2, but different from the quantum case,
we have the simple formula

{am— - ar, an_g - ap} = ikam g - Angr (Okg0,0 + Oktn—r,0) +i(m — k)min—k - % (Om—k10,0 + Omin—k—r0)-

which gives {Ly,, L} = i(m — n)Ly,4, without the annoying term involving d,,1r.0.

The action of the Hamiltonian vector field Xz, on the charges is given by
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Since a,;, commutes with &,,, we have X, (ah) = 0 trivially. v

The spacetime coordinate fields are given by

XHoT,o7) =X (o) + Xk(c7),

where
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For the vector field V,,; = —3 elmo™ §_ we find that
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There are some discrepancies but_supposely we should find that Xp,, (X#*) = V. (X*") and similarly
X7 (XH) =V (XH). O

2 Charge algebras for the quantum string

Upon quantization, Poisson brackets for the oscillators are promoted to commutation relations for corresponding
creation and annihilation (and zero-mode) operators on the string Fock space,

[ o] = [ad,, o] = mn gm0, [P",2"] = —in™”,



where o, = (ai‘n)T and similarly for the a ’s. In this exercise you will study the Fock space operators corre-

sponding to the conserved charges encountered in our analysis of the classical string.
Question 2.1

Write the generators of spacetime Poincaré symmetry in terms of oscillator creation and annihilation opera-
tors. By direct computation or otherwise, show that the commutation relations for these charges are precisely
those of the Poincaré algebra computed in problem 1(a).

Proof. The generators of the Poincaré group are the usual ones:

PH = ph, \/
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but now all operators are defined on some Hilbert space. To show that we have the same Poincaré algebra
relation (with an extra factor of i, due to the difference in convention of the Lie brackets), there are two
ways:

o We can go through the calculation of Question 1.(a) again with caution that we have kept track of
the ordering of the operators correctly. This is indeed the case.

o Alternatively, we may argue that the Poisson brackets must be preserved in the canonical quantisation
scheme. More explicitly, canonical quantisation is a map @ from real-valued C*°-functions on classical
phase space T*M to the set of self-adjoint operators on a Hilbert space H, such that Q(1) = idy
and Q({f,g}) = iA[Q(f),Q(g)] + O(A?)!. The existence of such quantisation map @ is assumed in
physics. Mathematically, we can construct ) through the schemes of either geometric quantisation
or deformation quantisation.

In this method, however, we may never know if we have the correct form of the operators P* and
MM as they depend on the quantisation ) we construct. The choice of quantisation is indeed a
problem as already shown in the lectures. \/ O

Question 2.2

In the quantum theory, we define worldsheet conformal generators by
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Argue that the commutation relations of these operators must take the form
[Lma Ln] = (m - n)Lm+n + A(m)5m+n,0

where A(m) is a c-number (i.e., just a number) depending on m. Now determine the form of A(m), either
by brute force, or by arguing as follows:

i) First argue the A(—m) = —A(m).

IThe explicit dependence on £ is necessary as it is proven that Q can never be an isomorphism of Lie algebras.



ii) Now use the Jacobi identity for the commutator algebra to show that for k +m + n = 0, one has

(n—m)A(k) + (k—n)A(m) + (m — k)A(n) =0

iii) Therefore deduce that in general the c-number term takes the form

A(m) = eym + cgm?

where ¢1 and cg are constant c-numbers.

iv) By evaluating the expectation value of [L;,, L_,,] in the oscillator ground state |0;0) for m = 1 and
m = 2, determine the values of ¢; and c3.

Proof. We begin with considering the following commutator:
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Then the commutator for L,, and L,, is given by
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For m+mn # 0, the second term vanishes and we have [Ly,, L] = (m —n)Ly4n. For m+n =0, Ly, = Lo
is special, in the sense that 2
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We still have an unsolved “infinity”, namely ), _, k(m — k). There is no way to preceed from here.

*The black magic Y o | n = —1/12 appears finally...



Alternatively, we take a step back and look at
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By symmetry, the sum over Z can be written as sum over N:
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Unfortunately we still have the annoying infinities...

3 Open string at level two

Question 3.1

Derive the conditions for a state of the form

|¢) = (Lo +~yL_1L_1)]0;p)

to be spurious and physical.

Question 3.2

Explain why this is the only form for an additional state (beyond those of the form L_;|x1)) that one must
examine at level two when looking for physical spurious states.

Question 3.3

Construct the reduced Hilbert space at level two for the open string with normal ordering constant a = 1.
Give a D-dimensional spacetime interpretation of your results.
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