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1 Projective Geometry

This section is a brief review on ASO. Projective Geometry. All vector spaces are assumed to be finite-dimensional. F denotes
a field, which is usually R or C, unless claimed otherwise.

1.1 Projective Spaces and Transformations

( Definition 1.1. Projective Spaces 1

[ Let V be a vector space. The projective space P(V') of V is the set of 1-dimensional subspaces of V. J

Let V = F"*! be a finite-dimensional vector space. The projective space P(F"*1) is usually denoted by FP".

Remark. From A5. Topology and B3.5. Topology and Groups, we know that topologically the real projective space RP™ is
the quotient of S™ by identifying the antipodal points:

RP" = S"/{x ~ —a}

RP™ is a connected, compact and Hausdorff space, with the fundamental group

(RP") Z, n =1;
e =
! Z)2Z, n > 2.

Definition 1.2. Homogeneous Coordinates

Let V be a (n + 1)-dimensional vector space. We fix a basis {vo,...,v,} of V. For each [v] € P(V), v is called a
representative vector of [v]. We expand v with respect to the basis:

n
v = E T;U;
=0

The coordinates [v] = [z : - - : ] is called the homogeneous coordinates. They are unique for a point in P(V') up ton
scaling by a factor:

[To - xp] = [Axo -+ Ay, (A#0)
Assume that charF = 0. Let U; := {[zg : --- : @] € FP" : x; # 0} be an open set in FP". We note that any point in
Up has a unique representation [yg : ---: 1 : -+ : y,], which gives a homeomorphism U; = F". In addition we note that

FP™ \ U; 2 FP"!. So we have the decomposition:
FP" =~ FP"~' UF"

Remark. When F = R or C, we note that FP" has an open cover U?:o U;. We can utilise this to construct FP™ as an
n-dimensional (real/complex) smooth manifold.

Example 1.3. Riemann Sphere

Topologically, CP! = §2 =~ C, := CU {oo}. This is known as the Riemann sphere. See A2. Complex Analysis and
B3.2. Geometry of Surfaces for detail.

Definition 1.4. Projective Linear Subspaces

Let P(V) be a projective space of V. A projective linear subspace P(U) is the set of 1-dimensional subspaces of the
vector subspace U < V. The dimension of P(U) is defined to be dimU — 1.

In particular, if dimP(U) = 1, then P(U) is called a projective line.




Let P(Uy) and P(Us) be two projective subspaces of P(V'). We define the projective span of P(U;) and P(Us) to be

(P(U1),P(Uz)) :=P(Uy + Uz)

Proposition 1.5. Projective Points and Lines
Let P(V') be a projective space.
o Through two distinct points in P(V') there passes a unique projective line;

« Two distinct projective lines in P(V') intersect in a unique point.

Proof. Trivial by dimension counting. O

Proposition 1.6. Projective Dimension of Intersection

Let P(V') be a projective space. Let L1, Ly be two projective subspaces. Then
d1m(L1 N LQ) =dim L1 + dim Ly — dim <L1, L2>

We adopt the convention that dim @ = —1.

Proof. This is the projective version of the vector space dimension formula for intersection:

dim(U1 QUQ) :dimU1+dimU2—dim(U1+U2) O]

e ~
Definition 1.7. Projective Transformations

Let T : V — W be an invertible linear map between vector spaces. Then it induces a map 7 : P(V) — P(W) via the
following diagram:

P(V) —— P(W)

T
V— W

That is, 7([v]) = [Tv]. 7 is called a projective transformation.
. J

The group of projective transformations in P(V') is called the projective general linear group of V and is denoted by
PGL(V). If V = F", then the projective general linear group is denoted by PGL(n,TF).

Example 1.8. Mobius Group

The group of projective transformations on the Riemann sphere is PGL(2, C), which coincides with the group of Mobius

transformations Mob: .
az +
T(z) = cad—0b
{ () cz+d " c# 0}

( Definition 1.9. General Position 1

Suppose that dimV = n + 1. The n + 2 points Xy, ..., X,,4+1 in P(V) is said to be in general position, if any subset of
(n + 1) of the points is represented by linearly independent representative vectors.




Theorem 1.10. General Position Theorem

Let {Xo,..., Xn+1} and {Yp,...,Y41} be two sets of points in the n-dimensional projective space P(V), which are
in general position repsectively. Then there exists a unique projective transformation 7 : P(V) — P(V) such that
T7(X;) =Y, for each i € {0,...,n + 1}.

Proof. Let X; = [v;] for i = 0,...,n + 1, that is, v; € V are representative vectors for X;. The general position hypothesis
implies that vy, ..., v, form a basis for the vector space V. Then for the last point X,, 1, we have

n
Un+1 = E AiUs
i=0

for some scalars \;. Now, all \; are nonzero, again using the general position hypothesis: if one were to be zero, then
we would get a dependency relation between v,,41 and n of the other v;. So we may in fact replace v; by A;v; and take

n
Un4+1 = E V;
1=0

as representative vector for our last point. Again using the general position hypothesis, this representation of v,, 11 is

unique.
Similarly we can take Y; = [w;] for i = 0,...,n + 1, with w,11 = Y. jw; where wy,...,w, is another basis of
V. Now there exists an invertible linear transformation T of V' with T (v;) = w; for ¢ = 0,...,n. Linearity and the

formulae for v,y 1, wp+1 imply that T (v,41) = wp41 also, as required.

If S is another linear transformation inducing a projective transformation with the required property, then Sv; = p;w;
for i =0,...,n+ 1, where p; are nonzero scalars. Now

n n
Hnt1Wni1 = SUpt1 = ZSUz‘ = Z,ini
i=0 i=0

SO Wnt1 = Doi g (Hi/pnt1) w; and by uniqueness of this representation we see all the p; are equal. Hence S = pT
and they induce the same projective map. O

Corollary 1.11. Coordinate Version of General Position Theorem

Let {Xo,..., Xnt1} be a set of points in the n-dimensional projective space P(V'), which is in general position. Then
there exists a basis of V' in which the points are represented by the homogeneous coordinates:

Xo=[1:0:---:0, Xy=[0:1:---:0], -+, X,=[0:0:---:1], Xpp1=[1:1:---:1]
The General Position Theorem is useful in proving the following two classical theorems in projective geometry.

Theorem 1.12. Desargues’ Theorem

Let P, A, A’, B, B’,C,C’ be seven distinct points in a projective space such that the lines AA’, BB’ and C'C’ are distinct
and concurrent at P. Then the points of intersection ABN A’B', BCNB'C', CANC'A’ are collinear.

Proof. As in the proof of the General Position Theorem above, we can choose representative vectors p,a,a’,b, v, c, ' for our
points such that
p=a+ad =b+b =c+¢

Now these equations imply a —b = b — a’, so a — b is a representative vector for ABN A’B’. Similarly b —c and ¢ —a
are representative vectors for BC' N B’C’ and CA N C’ A’ respectively. But (a — b) + (b — ¢) + (¢ — a) = 0, so these
three representative vectors are linearly dependent, hence the points they represent are collinear. O

Theorem 1.13. Pappus’ Theorem

Let A, B,C and A’, B’, C’ be two pairs of collinear triples of distinct points in a projective plane. Then the three points
BC'NB'C,CA NC'A,AB'n A’B are collinear.



Proof. Without loss of generality, we can assume that A, B,C’, B’ are in general position. If not, then two of the three
required points coincide, so the conclusion is trivial. By the General Position Theorem, we can then assume that

A=101:0:0, B=[0:1:0], C'"=[0:0:1], B =[1:1:1]

The line AB is defined by the 2 -dimensional subspace {(mo, T1,T2) EF3 1 ap = 0}, so the point C', which lies on this
line, is of the form C' = [1:¢: 0] and ¢ # 0 since A # C. Similarly the line B'C" is 9 = 1, s0 A’ = [1: 1 : a] with
a # 1.

The line BC" is defined by 29 = 0 and B’C is defined by the span of (1,1,1) and (1,¢,0), so the point BC' N B'C is
represented by the linear combination of (1,1,1) and (1, ¢, 0) for which z¢y = 0, i.e.

(1,1,1) — (1,¢,0) = (0,1 — ¢, 1)
The line C’A is given by x; = 0, so similarly C A’ N C’ A is represented by
(1,¢,0) — ¢(1,1,a) = (1 — ¢,0, —ca)
Finally AB’ is given by z1 = 25, so AB'NA'B is
(1,1,a) + (a — 1)(0,1,0) = (1, a,a)
But then
(c—1)(1,a,a) + (1 —¢,0,—ca) +a(0,1 —¢,1) =0

Thus the three vectors span a 2-dimensional subspace and so the three points lie on a projective line. O

1.2 Plane Curves

From now on we mainly work in CP? and occasionally in RP?. The benefit of working in complex spaces is explained by the
following theorem in commutative algebra:

Theorem 1.14. Hilbert’s Nullstellensatz
Let F be an algebraically closed field. Let I be an ideal in F[z1, ..., z,]. We define the algebraic set
V(I):={xeF": Vfel(f(x)=0)}

Then V(I) = V(V/I), where
VI:={feFzy,...,zn): ImeN (f" € I)}

is called the radical of I.

Proof. See B2.2. Commutative Algebra. O

Corollary 1.15. Polynomial with Repeated Factors

Let P,Q € Clzy,...,2,]. Then V(P) = V(Q) if and only if there exists m,n € Z, such that P | Q™ and Q | P™; or
equivalently, if and only if P and @ have the same irreducible factors (possibly with different multiplicities).

Corollary 1.16

A complex polynomial with no repeated factors is uniquely determined (up to scaling by a constant) by its set of zeros.



Definition 1.17. Homogeneous Polynomials, Plane Projective Curves

A polynomial P(x,y,z) € F[z,y, 2] is called homogeneous of degree d, if
Pz, My, \z) = MP(z,y, 2)

for A € F. Tt is clear that {P(z,y,2) = 0} is a well-defined subset of FP?.

If P(x,y, z) is homogeneous of degree d > 0 and has no repeated factors, then P(z,y,z) = 0 defines a plane projective
curve C in FP?. The degree of C' is d.

Remark. More rigourously, we define the plane projective curve to be an equivalent class of polynomials, with P ~ @ if and
only if P and @ have the same repeated factors (so that their sets of zeros are the same in the complex projective plane).

Remark. By definition, a plane projective curve is a closed subset of FP?, and hence is compact and Hausdorff. For F = C,
such plane curves are in fact Riemann surfaces.

( )

Definition 1.18. Irreducibility, Components

A projective plane curve C defined by P(z,y,2) = 0 is said to be irreducible, if P is irreducible.
An irreducible curve D defined by Q(x,y,z) = 0 is said to be a component of C, if @ divides P.

. J/

s N

Definition 1.19. Singular Points

The point [a: b : ¢] € FP? is called a singular point of C, if

oP oP oP
%(a,b,c) = 8—y(a,b,c) = %(a,b,c) =0

C is said to be non-singular if it has no singular points.

| J/

Remark. Since P is homogeneous of degree d, differentiating with respect to A we obtain the Euler’s relation:

oP oP oP

So the vanishing of the partial derivatives actually implies the vanishing of P and hence [a: b: ] € C.
A polynomial p(x,y) € Flx,y] defines a affine plane curve C' in F? by p(z,y) = 0.
« For a projective curve C defined by P(z,y,z) = 0, we can identify F? with Uy, and hence C' N Uy is an affine curve

defined by P(z,y,1) = 0;

x
o Conversely, for an affine curve defined p(z,y) = 0, it extends to a projective curve defined by P(z,y,2) = zdp<;, %)

for sufficiently large d > 0.

Lemma 1.20

Suppose that P(z,y) € C[x,y] is homogeneous of degree d. Then P can be factorised into a product of linear polyno-

mials:
d

P(z,y) = H(Oéim + Biy)

i=1

Proof. Suppose that P(x,y) is a homogeneous polynomial of degree n. Then there exists ag, ..., a, € C such that

n
P(z,y) =Y aa'y""
=0



n

Let m be the largest integer such that a,, # 0. Let Q(z) = Zaixi. By the fundamental theorem of algebra, @

=0
m

factorises into linear factors: Q(z) = amH x — \;). For y # 0, we have

- x l n o z n—m a
Plz,y)=y"> a; (y) =y"Q(x/y) = amy” (y - )\i> =amy" " [[(z = Aiw)
=0 i=1

i=1
If m < n, then both sides of the equation is zero when y = 0; if m = n, then

m

P(2,0) = apz”™ = apmy" " [ (= - Aiy)‘yzo

i=1

We deduce that for any x,y € C,

m

P(z,y) = amy" " [[(= = \iv)
=1

Since C is an infinite field, the equation also holds in C[z, y]. Hence we have factorised P(x,y) into linear polynomials
over C. 0

Definition 1.21. Multiplicities, Tangent Lines

Suppose that p(z,y) = 0 defines an affine curve C' in C2. The multiplicity of C at (a,b) € C is the smallest integer m
such that o
ot

OxtoyI

P(a,b) #0

for some i,j € Nwithi+j=m
The polynomial

i+J I*G,i AV
DA GO VRl)

L yd 151
tiimm 2ty ilg!

is homogeneous of degree m, and hence can be factorised into a product of m linear polynomials a(z — a) + B(y — b) by

the previous lemma. Each linear polynomial defines a line in C2, called the tangent line of C' at (a,b).

Remark. A point (a,b) € C is nonsingular if and only if it has multiplicity m = 1. In this case (a,b) has a unique tangent

line given by
oP oP
B (@0 —a)+ afy(cub)(y —b)=

The tangent lines of a projective curve can be defined by pulling back to the affine coordinates. In particular, if (a,b,c) € C
is non-singular, the unique tangent line at (a, b, ¢) is given by

oP oP
N (a,b,c)y + ——

P
(a,b,c)x + or P

9 (a,b,c)z=0

If P(z,y, z) is homogeneous of degree d = 2, then the curve C' is called a conic. Note that such polynomial is defined by a
quadratic form in F3, P(v) = B(v,v).

( N\

Definition 1.22. Quadratic Form

B:V xV — Fis called a quadratic form on the vector space V, if
o B(v,w) = B(w,v);
. B()\lvl + )\QUQ,U)) = )\13(’[)1,11.)) + AQB(UQ,'LU).




If we fix a basis {vg, ..., v, } of V. Then B has the form
n n
B(z,y) = Z ZMij-Tiyj =aT Ay
i=0 =0

for x,y € F**!, where A € M1y x (nt1) (F) is a symmetric matrix and is called the Gram matrix of B.

Theorem 1.23. Diagonalisation of Quadratic Forms

Let V be a (n + 1)-dimensional vector space. Let B be a quadratic form on V.

1. If F = C, then there exists a basis {vg, ..., v, } of V such that
B(v,v) = Z A
i=0

2. If F =R, then there exists a basis {vy, ..., v, } of V such that

B = Y-S,
i=0 j=1
where v = Y"1 (A,

Proof. See M1. Linear Algebra. O

Remark. Suppose that C' is a conic on CP?. Then C' can be put into one of the following forms:
e P(z,y,z) =22 This is the double line x = 0.
e P(z,y,2) = x? + y?. This is a pair of lines z + iy = 0 and x — iy = 0.

o P(x,y,2) = 2% + y? + 22. This is a non-singular conic.

Theorem 1.24. Rational Parametrisation of Conics

Let C be a non-singular conic in the projective plane FP? and A € C. Let P(U) C FP? be a projective line such that
A ¢ P(U). Then there exists a bijection « : P(U) — C such that A, X, a(X) are collinear for all X € P(U).

Proof. Suppose the conic is defined by the nondegenerate quadratic form B. Let a € FP? be a representative vector for A,
then B(a,a) = 0 since A lies on the conic. Let z € P(U) be a representative vector for X € P(U). Then a and x are
linearly independent since X does not lie on the line P(U). Extend a, z to a basis a,z,y of FP2.

Now B restricted to the space spanned by a, x is not identically zero, because if it were, the matrix of B with respect
to this basis would be of the form

0 0 =
0 0 =«
* k%

which is singular. So at least one of B(z,z) and B(a,x) is non-zero. Any point on the line AX is represented by a
vector of the form Aa 4+ pux and this lies on the conic C' if

0 = B(A\a + px, \a + px) = 2 \uB(a, z) + p*B(x, x).

When p = 0 we get the point X. The other solution is 2AB(a,x) + uB(x,z) = 0 i.e. the point with representative
vector

w = B(z,z)a — 2B(a,x)x

which is non-zero since the coefficients are not both zero. We define the map a : P(U) — C by a(X) = [w], which
has the collinear property of the statement of the Theorem. If Y € C is distinct from A, then the line AY meets
the line P(U) in a unique point, so a~! is well-defined on this subset. By the definition of o, a(X) = A if and only
if B(a,z) = 0. Since B is nonsingular f(xz) = B(a,z) is a non-zero linear map from V to F' and so defines a line



(the tangent to C' at A), which hence meets P(U) in one point. Thus « has a well-defined inverse and is therefore a
bijection. O

Proposition 1.25. Five Points Determine a Conic

Let A, B, C, D, E be five points on a projective plane FP? such that no three of them are collinear. Then there exists a
unique conic passing through these points.

Proof. By assumption A, B,C, D are in general position. By General Position Theorem we may assume that A =[1:0: 0],
2

B=[0:1:0],C=[0:0:1and D =[1:1:1]. Suppose that E = [ag : a1 : a2]. Let C : Z)\i’jxiszobeaconic
that contains the five points. Y
A, B,C € C implies that Aog = A1,1 = A22 = 0. So C has the form

A0,1T0T1 + A1,2T1T2 + Ap 12220 = 0

D,E eC implies that ()\0,1,)\1,2,)\2’0) . (1, 1, 1) = 0, ()\0’1,>\1’2,)\270) . (CYQ,CK1,0¢2) = 0. Since D 7& E, <(1, 1, 1)> 75
((ag, a1, 12)). We deduce that (A1, M2, Mao) € ((1,1,1), (cg, 1, a2))", which is a 1-dimensional subspace. Hence
the coefficients of the quadric is uniquely determined up to rescaling by a constant. The conic determined by the
quadric is unique. O



2 Intersection Theory

The main result in this section is the Bézout’s Theorem, which claims that two plane curves of degree m and n respec-
tively roughly intersect in mn points. We shall make the statement rigourous by defining the intersection multiplicity

properly.

2.1 Resultants

e )

Definition 2.1. Resultants

Let p, q € Flz] given by
p(l’) = Zakwka Q(x) = Z bkxka (ana bm 7é O)
k=0 k=0

Then the resultant of p and ¢ is defined by the rank (m + n) determinant:

ao a’l e an O DRI O
0 a/O al ... an PR O
m rows
L 0 0 .o aO al PRI an
Ryp,q = det bo by -+ by O - 0
0 by by - by --- 0
. . . TOWS
0 0 - by by --- by

For P(z,y, z) and Q(z,y, z) in Clz, y, 2|, we identify C[z,y, z] as a subring of F[z], where F = C(y, z). So the resultant of P
and @ is a polynomial in C[y, z]. It is denoted by Rp,qg(y, 2).

Proposition 2.2. Properties of Resultants

Suppose that p,q,r € Flz] and P,Q, R € Clz,y, z]. We assume that P, @, R are homogeneous polynomials and (1,0, 0)
is not a root of P, @ or R (this is to ensure that P,Q, R have the same degree when considered as polynomials in
Clz,y, 2] and in Cly, z]).

1. p and ¢ has a non-constant common factor if and only if R, , = 0.

2. P and @ has a non-constant common factor if and only if Rpg(y,z) = 0.

3. If P and @ are homogeneous of degree m and n respectively, then Rp g(y, z) is homogeneous of degree mn.
4. Let F = C. Suppose that Aq,.., A\, are the roots of p and py, ..., s, are the roots of g. Then

Rpq = an'br, H H(Nj - Ai)
i=1j=1
5. RpqRpr = Rpgr
6. Rrq(y,2)Rpr(Y:2) = RPQr(Y: 2).
Proof. 1. Let
p(l’) = Z ak'xkv Q(Jj) = Z bkxka (an7 bin 7é O)
k=0 k=0

p and ¢ have a non-constant common factor if and only if there exists polynomials ¢ and ¢ with degp =n —1
and deg1 = m — 1 such that py» = qp. Suppose that

n—1 m
p@) =S apat, (@) =Y Bt
k=0 k=0

10



We equate the coefficients of each 27 in the equation py) = gp and obtain:

aofo = boag
apf + a180 = boay + biavg

anﬁmfl = bmanfl

The existence of a non-trivial solution (o, ..., p—1, Bo, ---s Bm—1) is equivalent to the vanishing of the determinant
defining the resultant R, 4.

. Without loss of generality we assume that P(1,0,0) = Q(1,0,0) = 1. Hence P and @ are monic polynomials in
Rx], where R := Cl[y, z]. From AS8. Rings and Modules we know that R is a unique factorisation domain. Its
field of fraction is F = C(y, z). We have

P, @ has a non-constant common factor in C[z,y, 2]
<= P, has a non-constant common factor in R|x]
<= P, has a non-constant common factor in F[z] (Gauss’ Lemma)

— Rpo(y,z) =0

. By definition the resultant Rp (y, z) of homogeneous polynomials P(z,y, z) and Q(z,y, z) of degrees n and m
is the determinant of an n + m by n + m matrix whose ij th entry r;;(y, z) is a homogeneous polynomial in y
and z of degree d;; given by

g — nt+i—j7 if1<i<m
N R 1fm+1<z n+m.

Then Rpg(y, 2) is a sum of terms of the form

n+m

+ H Tio (i) (Y, 2)

=1

where o is a permutation of {1,...,n + m}. Each such term is a homogeneous polynomial of degree
n+m m+n
Z dig (i) _Z (n+i—o(i)+ > (i—o(i)
=1 i=m-+1
m—+n m—+n
=nm + Z 1 — Z ot
i=1 i=1
= nm.

Therefore Rp g(y, z) is a homogeneous polynomial of degree nm in y and z.

. For each \; we associate an indeterminate x; and each p; with y;. Consider

n
g(xla"'axn7y1a"'7ym . H G(C[xl7~-~7xn7y1a"'aym]

||:j3

We note that £ is homogeneous of degree mn. On the other hand, let

n m
pl,xy,rn) =an [J(@—2:),  a(@y1, e ym) = H T —yj;)

=0

So Rpq € Clz1,....Zn, Y1, .., Ym]. From the proof of (3) we infer that R, , is homogeneous of degree mn.
Moreover, by (1) we have that A\; = p; implies Rp, ; = 0. Therefore (z; — y;) divides Rp ¢(Z1,...; Tns Y15 ooy Ym)
for each 4, j. We deduce that £ divides Ry, 4. In particular

n o m

Rp,q(Ih o Tns Y1y -eey ym) =C H H(yj - 1‘7,)
i=1j=1
We put y1 = -+ = ym = 0 so that ¢ = b,,2™. In such case, the determinant defining R, , is upper triangular.

11



Therefore we have
n

Rpq(T1, s T, 0,0, 0) = ag'bp, = ap'by, [ [(—=

i=1
And hence C = a]'b},. Finally,
Rpq = Rpig1y ooy Ay 1 ooy i) = aTbT, H H Ai)
i=1j5=1
5 & 6. These are direct corollaries of (4). O

Lemma 2.3. Existence of Intersections

Any two projective curves in CP? intersects in at least one point.

Proof. Let C and D be projective curves defined by homogeneous polynomials P(x,y,z) = 0 and Q(z,y,z) = 0. By
Proposition 2.2, either Rpg(y,2) =0 or Rpg(y, z) is a homogeneous polynomial. In the latter case, by Lemma 1.20
Rp.o(y,z) factorises into a product of linear factors (b;z — ¢;y). Therefore in both cases there exists (b,c) € C?\ {0}
such that Rpg(b,c) = 0. Hence p(z) := P(x,b, ¢) and ¢(x) := Q(z, b, ¢) have a common root a € C. We deduce that
P(a,b,c) = Q(a,b,c) =0 and hence [a:b:c] € CND. O

Lemma 2.4. Weak Form of Bézout’s Theorem

Suppose that C' and D are projective curves in CP? of degree n and m respectively. If they have no common components,
then they intersect in at most mn points.

Proof. Let C and D be projective curves defined by homogeneous polynomials P(z,y,z) = 0 and Q(z,y,z) = 0. Suppose
the a set of (mn + 1) distinct points lies in C' N D. By applying a projective transformation we assume that [1: 0 : 0]
does not lie in S, nor in a line joining any two points of S. In particular, P(1,0,0),Q(1,0,0) # 0. By the proof of
the previous lemma, the resultant Rp ¢ (y, 2) is a product of linear factors (b;z — c¢;y) with (b;, ¢;) € C?\ {0}.

For each [a: b:c] € S, we have P(a,b,c) = Q(a,b,c) = 0 and hence the resultant Rpg(b,c) =0. Since [L: 0:0] ¢ S,
(b,c) # 0. We have that bz — cy divides Rp(y, z). Furthermore, for [a : b: ¢] and [a’ : &' : ¢/] in S, we cannot have
[b:c]=[V: ], because otherwise [1 : 0 : 0] would lie on a line joining these points. Hence Rp g (y,2) has (mn + 1)
distinct linear factors. It must be identically zero. We deduce that C and D has a common component. O

Corollary 2.5. Singular Points and Irreducibility

Suppose that C' is a projective curve in CP?.
1. If C is non-singular, then C is irreducible;

2. If C is irreducible, then C has at most finitely many singular points.

Proof. 1. Suppose that C is reducible. Let C' be defined by PQ = 0. By Lemma 2.3, there exists [a : b: c] € CP? such
that P(a,b,c) = Q(a,b,c) = 0. By differentiating with respect to PQ we deduce that [a : b : ] is a singular
point of C.

2. Without loss of generality we assume that [1 : 0 : 0] ¢ C. Then the defining polynomial P(z,y,z) of C
has non-zero coefficient of . Then 9, P is a non-zero homogeneous polynomial of degree n — 1. Since C' is
irreducible, P and 0, P are coprime. Then C' and D have no common components, where D is the curve defined
by 0. P(x,y,z) = 0. It follows from the weak form of Bézout’s Theorem that C' and D have at most n(n — 1)
points of intersection. The singular points of C' lie among these. O

Theorem 2.6. Pascal’s Mystic Hexagon

The pairs of opposite sides of a hexagon inscribed in an irreducible conic on the projective plane meet in three collinear
points.

12



Proof. Let R(x,y,z) =0 defines the conic E. Let the successive 6 sides of the hexagon be defined by the linear polynomials

Lq,...,Lg. Let C and D be the curves defined by P := L1LyLs =0 and Q := L4LsLg = 0 respectively. C and D has
9 points of intersection, 6 of which are the vertices of the hexagon, and the remaining 3 are the intersections of the
opposite sides of the hexagon.

Let [a:b:c] € E\ (CND). Then
Q(a,b,c)P(z,y,z) — P(a,b,¢)Q(z,y,z) =0

defines a cubic F which meets F in the six vertices plus the point [a : b : ¢]. By the weak form of the Béouzt’ Theorem,
FE and F have a common component. Since the conic is irreducible, we must have

Q(a7b7 C)P(IE,y,Z) - P(a7b7 C)Q(‘TayVZ) = L(l’,y,Z)R(Z‘,y7Z)

Hence the linear polynomial L defines a line passing through the 3 points of intersection of the opposite sides of the
hexagon. O

2.2 Bézout’s Theorem

In order to state the strong form of Bézout’s Theorem we must define the intersection multiplicity of two curves prop-
erly.

r

Definition 2.7. Intersection Multiplicity

Let C and D be projective curves in CP2. Let p € CP?. We define the intersection multiplicity I,(C, D) by:

If p¢ CND, then I,(C,D) := 0.
If p lies on a common component of C' and D, then I,(C, D) := cc.
If p € C N D but not in common components of C and D:
— remove any common component of C and D to get the curves C’, D’;

— apply a projective transformation such that [1 : 0 : 0] does not lie in C’ U D’, nor in a line joining distinct
points of C’ N D’, nor in any tangent line to C’ and D’ at a point of C’ N D’. (We refer this choice of
coordinates as (*).)

Then define I,(C,D) at p = [a : b : ¢] to be the largest integer k such that (bz — cy)® divides the resultant
Rpr o (y, ), where P’ and @' are the defining polynomials of C’ and D’ respectively.

Proposition 2.8. Properties of Intersection Multiplicity

Let C and D be projective curves in CP2.

1.
2. p¢ CN D if and only if I,(C, D) = 0.
3.
4
5)

Proof.

1,(C, D) =1,(D,C).

Two distinct lines meet at a point with multiplicity 1.

. If C' is the union of two components C; and Cs, then I,(C, D) = 1,(C1, D) + 1,(Cs, D).
. If C' and D are defined by P and @ respectively, and E is defined by PR + @, then I,(C, D) = 1,(C, E).

1. It follows from |Rpq(y,2)| = [Ro.p(y, 2)|.

22.Ifp=Jla:b:c € CND, then P(x,b,c) and Q(x,b,c) has a common root a. Then Rpg(b,c) = 0 and hence
Rpo(y, z) is divisible by bz — cy. We deduce that I,(C, D) > 1.

3. We can choose the coordinates such that the lines ax + by = 0 and cx + dy = 0 meet at p =[0: 0 : 1]. Then the
resultant is (ad — be)y.

4. This follows from Proposition 2.2.6.
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5. Without loss of generality we assume that P, Q) have degree m,n respectively and n > m. Let

R(l‘,y, Z) = Z pk(ya Z)xk
k=0
Suppose that Rp g = det(a;;). Then Rp prig = det(b;;), where
Qi ) < m
bij _ i—n .
a5 + Z Pi—n—kQkl T2
k=i—m
We note that det(a;;) = det(b;;) by row operations. Hence I,(C, D) =L,(C, E). O

Now the proof of Bézout’s Theorem is easy.

Theorem 2.9. Bézout’s Theorem

Let C and D be projective curves in CP? of degree m and n respectively. If they have no common components, then

Z I,(C,D) =mn

peCND

Proof. Using the choice of coordinates (x), we put P,Q to be homogeneous polynomials that define C' and D respectively.
Then the resultant is the product

k

k
Reqy,z) = [[(biz — )™, > ei=mn
1=1

i=1

Each such factor gives a point p; € C N D with I, (C, D) = e;. O

Proposition 2.10. Intersection Multiplicity 1

Let C and D be projective curves in CP? and p € C' N D. Then I,(C, D) =1 if and only if p is a non-singular point of
C and D, and the tangent lines to C and D at p are distinct.

Proof. We may assume that C' and D have no common component, and hence we may choose coordinates such that p = [0:
0 : 1] and the conditions of (x) hold.

 First, we show that if p € C' N D is a singular point of C, then I,(C, D) > 1.

We wish to show that y? divides the resultant Rp q(y,z) of the polynomials P(xz,y, z) and Q(z,y, z) defining C
and D. If p is a singular point of C', we have

oP opP
G (0:0:1) = 5.(0.0,1) = P(0,0,1) 0.

Hence
P(z,y,2) =ao(y,z) +a1(y,2)x + ... + an(y, z)z"
where y? divides ag(y, z) and y divides a;(y, 2). Also Q(0,0,1) =0 so
Qz,y,z) =bo(y,2) + bi(y,2)x + ... + b (y, 2)z™
where y divides by (y, z). Thus we can write
bo(y, 2) = boryz™"" + y2eo(y, 2)
and

bi(y, 2) = bioz™ " +yei(y, 2)
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for some homogeneous polynomials ¢(y, z) and ¢1(y, z). If bpy = 0 then the first column of the determinant
defining Rp(y, 2) is divisible by y? and hence y? divides Rpg(y, z) as required. If by; # 0 then the first
column is divisible by y; if we take out this factor y and subtract byg/bo; times the first column from the second
column then the second column becomes divisible by y. Hence again y? divides Rp.g(y, 2).

o IfI,(C,D) = 1, p must be a nonsingular point of C' and D. We need to show that the tangent lines coincide
if and only if y* divides the resultant Rp g (y,2), or equivalently that the derivative of Rp g(y,1) vanishes at
y = 0.

Now by assumption [1 : 0 : 0] does not lie on the tangent line to p for either curve so 9, P(0,0, 1) # 0 and similarly
for Q. The Implicit Function Theorem then tells us that in a suitable small neighbourhood, the solution = of
P(z,y,1) = 0 is a holomorphic function of y. In other words, near [0 : 0 : 1], the roots A1(y), 11(y) of P and @,
which coincide when y = 0, are holomorphic functions of y. Thus

P(x’:% 1) = (l‘ - )‘l(y))g(xvy) Q(xayv 1) = (.73 - Ml(y)) m(x,y)

for polynomials ¢, m in = with coefficients which are holomorphic functions of y. Then the resultant Rpg(y,1) =
(M (y) — p1(y)) S(y) where S(y) is holomorphic. Differentiating at y = 0,

IRPq(y,1)

oy = (X1(0) — p1(0)) 5(0) (%)

y=0
We shall show next that S(0) # 0.

Since 0P /0x(0,0,1) # 0,2 = 0 is not a repeated root of P(x,0,1) so for i # 1, X;(0) # 0 and similarly for Q. If
Ai(0) = p;(0) for 4,5 > 1 then [0: 0 : 1] and [X;(0) : 0 : 1] are distinct points in C' N D and [1: 0 : 0] lies on the
line joining them which contradicts our assumptions. Now S(y) is a product of resultants and we see here that
there is no other coincidence of roots than A\;(0) = p1(0) at y = 0. Thus S(0) # 0.

It follows that the derivative in equation (%) vanishes if and only if Aj (0)—p (0) = 0. Now since P (A1(y),y,1) =0,
differentiating with respect to y gives

oP , 0P
%)\1(?1) + E 0

and at [0 : 0 : 1] by Euler’s Relation 9,P = nP = 0, so the tangent line to C' is z — A{(0)y = 0 and to D is
x — 4 (0)y = 0. Hence the tangents coincide if and only if A](0) — ) (0) = 0, which proves the theorem. O

Corollary 2.11

Let C and D be projective curves in CP? of degree m and n respectively. Suppose that every p € CND is a non-singular
point of C' and D, and the tangent lines to C and D at p are distinct. Then C' N D contains exactly mn points.

2.3 Cubic Curves

We shall use the intersection multiplicity to classify cubic curves on CP?. We shall show that all nonsingular cubic has the
form
vz =a(x — 2)(x — \2)

for some A € C\ {0, 1}.

( Definition 2.12. Inflection Points ]

Suppose that p € C' is a non-singular point of the projective curve C'. p is called an inflection point of C' if there exists
a line L through p such that I,(C, L) > 3. Note that L is necessarily tangent to C.

Let P(x,y, z) be a homogeneous polynomial of degree d. The Hessian of P is defined by
Hp(z,y,z) = det(0;0; P)

So Hp is a homogeneous polynomial of degree 3(d — 2).
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Proposition 2.13. Charaterisations of Inflection Points
A non-singular point p = [ag : a1 : ap] € C is an inflection point of C' if and only if Hp(ay,a1,az) = 0, where P is the
defining polynomial of C.
Proof. For convenience we set
Pi = 81'P(a0,a1,a2), Pij = 8i8jP(a0,a1,a2)

Consider the line L as the set
{[ao-i-tao rap +tag a2+ta2] ZtG(C}

Note that I,(C, L) > 3 if and only if ¢* divides P(ag + tag, a1 + tag, as + tas). We use Taylor Theorem to expand it:

2 2 2
1
P(a0+ta0,a1 +t0¢1,0,2+t0&2) :P(ao,al,a2)+t E Piozi+§t2 E E Pijoziozj +t3R
i=0 i=0 j=0

We note that t3 divides this if and only if

2

2 2
ZPiai:ZZPijaiaj:0 (].)
=0

i=0 j=0
The polynomials P and 0; P are homogeneous of degree n and n — 1 respectively. By using Euler’s relation, we have
2 2 2
Z ZPl-jal-aj =(n-1) ZPZ-ai =n(n—1)P(agp,a1,a2) =0
i=0 j=0 i=0

and

2 2 2
Zzpijaiaj = (TL - ].) Z.PZOZZ =0
=0

i=0 j=0

First we assume that (1) holds. We note that the quadratic form defined by (P;;) on C? vanishes completely on (a, av).
Hence it is degenerate on C* and Hp(a) = det(P;;) = 0.

Conversely, we assume that det(P;;) = 0. Let « defines the tangent to C' at p. Extend a, « to a basis {a,a, 3} of C3.
The quadratic form with respect to the basis has matrix of the form

0 0 =
M=10 % =x

* ok %
Then we have MogM71Mog = 0. But

2 2 2
Moy = My =Y > Pyjaify = (n—1)Y P #0
i=0 j=0 =0
for otherwise 3 lies on the tangent a 4 tar. Hence we must have
2 2
Mi=) > Pyaia; =0
i=0 j=0

Hence the equation (1) holds. O

Lemma 2.14

Suppose that P(z,y, z) is a homogeneous polynomial of degree d > 1. Then

02P  0,0,P 9,P
PHp(z,y,2) = (d—1)* [ 0,0.P 2P  9,P
P  9,P 4P
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Proof. Starting from the Hessian
2P  0,0,P 0.,0.P
Hp(z,y,2) =det | 0,0, P 8§P 0,0, P
0,0,P 0,0,P 0°P

We perform some elementary row operations:

02P 0,0,P 0,0,P
ZHp(z,y,z) =det | 0,0, P 8§P 0,0, P
20,0, P 20,0,P 20°P
o%p 0z0y P 0,0.P
= det 0y0, P 8§P 0,0, P
x0%2P + y0,0, P + 20,0, P x0,0,P + y@;P +20,0,P 10,0,P + y0,0,P + z202P
0P  0,0,P 0,0,P
=(d—1)det [ 0,0,P 2P  0,0.P (using Euler’s Relation of 9, P, 0, P, 0,P)
0, P oy P 0. P

Then we perform some elementary column operations:

02P  0,0,P 20,0.P

2*Hp(v,y,2) = (d—1)det | 9,0, P 2P 20,0.P

0, P Oy P 20, P

02P  0,0,P x02P + y0,0,P + 20,0, P
=(d—1)det [ 9,0, P 2P  28,0,P +y0,P + 20,0.P
0P o, P 20, P + yOy P + 20, P

2P  9,0,P (d—1)0,P

=(d—1)det [ 9,0,P 2P (d—1)0,P (using Euler’s Relation of 0, P, 0, P, P)
0,P  8,P P
0:P  0,0,P 0, P
= (d—1)*det | 9,0,P 2P o,P O

o,P  9,P dP/(d—1)

Remark. In calculus we define the inflection point of the function f(z) to be the point xg such that f”(z¢) = 0.

Let C be defined by P(z,y,z). By applying a projective transformation we assume that P(0,0,1) = 0 and 9, P(0,0,1) # 0.
Applying the Implicit Function Theorem to P(z,y, 1) we know that there exists a holomorphic function g : U — V such that
9(0) =0 and P(z,y,1) =0 if and only if y = g(z). In particular we differentiate the equation with respect to = twice to get

o?P  0,0,P 0,P
g"(x) = (8,P)*det | 0,0,P 92P 9,P| =
0P 9P 0

HP(xvya 1)
(d—1)%(9,P)?

We note that [a: b: 1] is an inflection point of C' if and only if Hp(a,b, 1) = 0, if and only if ¢g”(a) = 0. So the definition of
inflection points we give is consistent with that in calculus.

Lemma 2.15

Suppose that C' is an irreducible curve in CP? of degree d. Then d = 1 if and only if every point of C' is an inflection
point.

Proof. The forward direction is trivial. For the backward direction, suppose that every point of C' is an inflection point.
As in the previous lemma, the local homogeneous function y = g(x) satisfies g(0) = 0 and ¢”(x) = 0 for all z € U.
Hence g(x) = Az. Thus the polynomial p(z) := P(x,\,1) = 0, and P(x, Az, 1) is divisible by (y — Az). Since P is
irreducible, we must have d = 1. O
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Proposition 2.16. Number of Inflection Points

Suppose that C is a non-singular curve in CP? of degree d.
1. If d > 2, then C has at most 3d(d — 2) inflection points;

2. If d > 3, then C has at least one inflection point.

Proof. Let C be defined by the polynomial P. For d > 3, Hp defines a projective curve H of degree 3(d — 2). The inflection
points of C' are exactly the points of intersection of C' and H.

1. If d = 2, then Hp is a constant polynomial. Hence C has no inflection points.

Since C' is non-singular, it is irreducible. For d > 3, Hp defines a projective curve H. If C and H have a
common component, then P divides Hp. Therefore every point on C' is an inflection point. It follows from the
previous lemma that d = 1. Therefore C' and H have no common component, then by the weak form of Bézout’s
Theorem, C' and H have at most 3d(d — 2) points of intersection.

2. By the above discussion, this follows from Lemma 2.3 immediately. O

Theorem 2.17. Normal Form of Cubic Curves

Let C be a non-singular curve in CP2. Then C is equivalent under a projective transformation to the curve defined by

vz =a(x — 2)(x — \2)

for some A € C\ {0,1}.

Proof. By the previous proposition, C' has an inflection point. We can choose coordinates such that [0 : 1 : 0] is an inflection
point of C and z = 0 is the tangent to C' at [0: 1: 0]. Then C is defined by P(z,y, z) = 0, where

P(0,1,0) = 0,P(0,1,0) = 9,P(0,1,0) = Hp(0,1,0) = 0, 0,P(0,1,0) #0
Using Lemma 2.14 with the role of y and z reversed, we have

2P 0,P 0,0.P
y*Hp(x,y,2) =4det | 9,P 3P  9.P
0,0,P 0,p 9*P

Hence
0=Hp(0,1,0) = —4(0,P)?0?P = 92P(0,1,0) =0

Therefore P must have the form
P(z,y,2) = yz(azx + By +72) + ¢(x, 2)

where ¢(z, z) is homogeneous in  and z of degree 3. Since 8 = 9,P(0,1,0) # 0, we apply the projective transformation

oar + vz .

[:y:z]— |z:y+ 55

so that C' is defined by
By*z +¢(x,2) =0

Since C' is non-singular, it is irreducible, and hence 23 does not divide 1 (x,z). We have
U(x,z) = A(z — az)(z — bz)(x — c2)

for some scalars A, a,b, c. Finally we apply the projective transformation

[x:y:z]H{xb_ZZ:y:z}

and with a suitable rescaling of y, we obtain

yviz = x(x — 2)(x — \2)
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A ¢ {0,1} because C is non-singular. O

Corollary 2.18. Number of Inflection Points of a Cubic Curve

A non-singular cubic curve in CP? has exactly 9 inflection points.

Proof. Let C be a non-singular cubic curve defined by P, and H be a cubice curve defined by Hp. By Corollary 2.11 of
Bézout’s Theorem, it suffices to show that each inflection point is a non-singular point of H, and the tangent lines to
C and H at p are distinct.

Let p be an inflection point. By a projective transformation we may assume that p =[0:1: 0] and
P(x,y,2) = 9?2 — x(x — 2)(z — \2)
The remaining work is a simple calculation:
0,P(0,1,0) = 0,P(0,1,0) =0, 0,P(0,1,0) =1

0, Hp(0,1,0) =24,  9,Hp(0,1,0)=0,  8,(0,1,0) = —8(A+1)

Hence the conditions are satisfied. O
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3 Topological Properties

We study the topological properties of the algebraic curves, which are examples of Riemann surfaces. Some results are from
B3.2. Geometry of Surfaces with details omitted.

3.1 Riemann Surfaces

Riemann surfaces are one-dimensional complex manifolds:

s

Definition 3.1. Riemann Surfaces

\

Suppose that X is a Hausdorff, second-countable topological space. X is called a Riemann surface, if there exists a
family of := {(U;, ;) : @ € I} such that

1. {U; :i € I} is an open cover of X;
2. ¢ :U; = C is a homeomorphism onto its image;

3. for U; NU; # &, the transition map

07!

(¢]

4 i U;NU;) = i (U;NU;
(U0 o4 J) ‘P]( J)

is a biholomorphism.

o is called an altas of X. (U;, ¢;) is called a coordinate chart, and ¢; is called a holomorphic coordinate on Uj.

Example 3.2. Non-Singular Algebraic Curves

The non-singular algebraic curves on CP? are Riemann surfaces.

Proof. Let C be a nonsingular projective algebraic curve defined by P(z,y,z) = 0. Every point lies in an affine open set of

CP? which is homeomorphic to C2. On z # 0 its equation is P(z,y, 1) = 0 and if C is nonsingular one of P /dx, d, P
is non-zero. Suppose it is the latter, then at (x,y) = (a,b) on the curve, the implicit function theorem tells us that
there are neighbourhoods V' and W of a and b in C and a holomorphic function g : V- — W such that for x € V
and y € W, P(z,y,1) = 0 if and only if y = g(x). Hence for (z,y) € C N (V x W) the function = has an inverse
x +— (x,g(x)), and this is a local coordinate for C.

If 0, P is non-vanishing we can do the same interchanging the roles of = and y, and get * = h(y). Where both
0, P and 0, P are non-vanishing, y = g(h(y)) and we have an invertible holomorphic function relating the two local
coordinates.

On the affine set y # 0, the equation of the curve is P(Z,1,2) where, when z # 0, T = z/y,z = 1/y and it is easy to
see that the holomorphic coordinates on the intersection of these two open sets is holomorphic and invertible. O

Definition 3.3. Holomorphic Maps

Let X and Y be Riemann surfaces. A continuous map f : X — Y is called a holomorphic map, if for each x € X, we
can find some coordinate chart (U, py) of z in X, and (W, ¢y ) of f(z) in Y, such that the composition map

Yw o fopy' tou(U) —C

is holomorphic.

Definition 3.4. Meromorphic Functions

Suppose that X is a Riemann surface. a meromorphic function is a holomorphic map f : X — CP! 2 C, such that f
is not identically equal to co on any connected component of X.
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Remark. The requirement that f is not identically equal to co on any connected component of X is necessary for the
meromorphic functions to form a field.

Proposition 3.5. Local Form of Holomorphic Maps

Suppose that f : X — Y is a holomorphic map between Riemann surfaces X and Y. For x € X, we can choose
holomorphic coordinate charts (U, ¢y) of z in X, and (W, ¢w ) of f(z) in Y, such that ¢y (U) and ¢w (W) contain an
open neighbourhood of 0 € C, and

Q/JWofoga[;l:zr—)Zn

We say that n is the ramification index of f at x, and write vy(z) = n.

Remark. With some abuse of language, we often say that f is locally the map f(z) = 2™.

Proof. Let F := 9y o fo @51. By translation we can always assume that ¢y and ¥y contains an open neighbourhood of
0 € C, and F(0) =0. If 0 is a zero of F of order n, then F' has the Taylor series around 0:

F(z):iakzk, an #0

k=n

Then G(z) := F(2)Y/" = al"z + o(z) and G'(0) = a/" # 0. By Implicit Function Theorem, there exists a injective
holomorphic function g : Q@ — C such that g(0) = 0 and F(g(z))"/™ = 2. Now we replace the holomorphic coordinate
o by g7t o ¢y. Then

F(z) =vwo fopgtog(z) = F(g(z)) = 2" O

Remark. Geometrically, the valency of f at a tells us how many solutions there are to the equation f(z) = y.

[ Definition 3.6. Ramification Points, Branch Points ]

Suppose that f : X — Y is a holomorphic map between Riemann surfaces X and Y. For « € X, if vy(z) > 1, then
x € X is called a ramification point; f(z) € Y is called a branch point.

Note that for vg(z) > 1, locally f(z) = 2" and f’(z) = nz""!' # 0 in a deleted neighbourhood of 0. Hence the set
{z € X : vy(x) > 1} is discrete. If X is compact, the set is finite. We have the following definition:

'd )

Definition 3.7. Degree of Holomorphic Map

Suppose that f: X — Y is a non-constant holomorphic map between compact connected Riemann surfaces X and Y.
Fix y € Y. We define the degree of f to be

deg f := Z vi(z)
zef~({y}

Lemma 3.8

deg f does not depend on the choice of y € Y.

Proof. Using connectedness and the fact that y — Z vy(x) is locally constant. See B3.2. Goemetry of Surfaces for

zef({y})
detail. X

Corollary 3.9

If y € Y is not a branch point, then deg f = card f~({y}).
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3.2 Degree-Genus Formula

We need the following theorem from B3.2. Geometry of Surfaces:

Theorem 3.10. Riemann-Hurwitz Formula

Suppose that f: X — Y is a non-constant holomorphic map between compact connected Riemann surfaces X and Y.
Then we have

X(X) =deg f - x(Y) = b(f)
where x(X) and x(Y') are the Euler characteristics of X and Y, and

o)=Y > (vle)—1)=> (degf—card [~ ({y}))

veY zef~1({y}) yey

is called the branching index of f.

Proof. Omitted. See B3.2. Geometry of Surfaces. O

Proposition 3.11

Suppose that C' is a non-singular projective curve in CP?. Then C' is compact, connected, and orientable.

Proof. Compactness is trivial. Since C'is a Riemann surface, it is orientable (the transition maps are holomorphic and hence
are angle-preserving). It remains to show that C' is connected. Below is some idea of the proof.

First consider the special curve z¢ 4+ y% — 2¢ = 0. The intersection multiplicity of y — z = 0 with the curve is clearly d,
so [0:1: 1] is a ramification point of the map f : C' — CP' = C,, [z : y : 2] = y/z with ramification index d. This
means that f~1(U) is connected for a small neighbourhood U of 1 € C. If there is another connected component Cj,
then 1 # f (Cp) but then f maps Cy to C = CP"\ {1} and so f is a constant c¢. But then the line y — ¢z = 0 divides
P but we have assumed that C' is nonsingular. So this curve is definitely connected.

Next we shall show that the space of non-singular curves of degree d is path-connected. The condition for non-
singularity is the vanishing of a polynomial in the coefficients. If we take curves define by P and @, then tP(x,y, z) +
(1 -t)Q(z,y, 2) for t € C will be nonsingular, unless a polynomial in ¢ vanishes at a finite number of points or is
identically zero. In the latter case, we can replace this path between P and @ by a series of such complex “intervals”
for which the singular curves are given by the vanishing of a polynomial in ¢. Either way, we can avoid a finite number
of points in C by a real path joining P to ), and so have a path of curves all of which are non-singular.

It remains to show that two non-singular curves are homeomorphic if they are connected by a path. Assuming this,
if we start with P(z,y,2) = 2™ 4+ y™ — 2", then since P = 0 is connected, so is the curve defined by Q.

Suppose that P(z,y,z,t) is a homogeneous polynomial in x,y,z whose coefficients depend smoothly on the real
parameter t, so that for each t € R the curve P(z,y, z,t) = 0 is non-singular. It is easy to check that the subset
P(x,y,2,t) = 0 of CP? x R has the structure of a 3-dimensional (real) smooth manifold M. We can introduce a
Riemannian metric on M by embedding CP? x R into RN for some N € N.

Now consider the surface N, := {(z,y, 2,t) : t = ¢} C M. We can find a normal vector field X, : p — X(p) € (T,N.)*
on N.. As dim(T,N.)* = 1, we can normalise the vector such that (X.(p), X.(p)) = 1 for all p € N.. We vary ¢ and
get a vector field X on M which is normal to N, at every point of M. The flow of X gives a local diffeomorphism
from t(0) = ¢ to t(s) = ¢ + s for small s. By connectedness this extends for ¢ to all ¢ € R. O

By the classification of compact connected topological surfaces, we note that a non-singular curve C is determined up to
homeomorphism by its Euler characteristic. We have x(C) = 2 — 2¢g for some g € N. The integer g is called the genus of
C.

Lemma 3.12. Ramification Index and Intersection Multiplicity

Suppose that C' is a non-singular projective curve such that [0:0:1] ¢ C. f: C — CP' given by [z : y : 2] — [z : ¥]
is a well-defined meromorphic function. The ramification points of f are those p € C' at which the tangent line 7}, at p
passes through [0 : 0 : 1]. The ramification index v¢(p) is the intersection multiplicity I,(C,T}).
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Proof. Let p = [a : b : ¢] € C be a ramification point. It could be shown that if ¢ = 0 and 9,P(a,b,c) # 0, then f is
locally the identity map and cannot have a ramification point at p. Suppose that ¢ # 0. Let C be defined by the
homogeneous polynomial P. Without loss of generality assume that 0,P(a,b,c) # 0 and use x as a local coordinate
to represent the curve as y = g(z). The map f is then locally g(z)/z if @ # 0 and z/g(x) if a = 0. Assume the first
case, then F' = 0 if and only if 2¢'(z) — g(x) = 0. But P(z,g(z),1) =0 so

opP , 0P
el <0
5 T 9 (@) By

At the ramification point b = g(a) = ag’(a), so

oP oP
a%(a, b,c) + ba—y(a,b7 c)=0

but from Euler’s Relation this means that 9, P(a,b,c) = 0. Hence the tangent line passes through [0: 0 : 1].
The tangent line T, is locally y — b = ¢'(a)(x — a). If v¢(p) = n, then we have

9(x) = g'(a)x + (z — a)"h(z)
where h is holomorphic with h(a) # 0. Since P(z,g(z),1) = 0, by putting = a + ¢, we have
Pla+t,b+ ¢ (a)t+t"k(t),1) =0

Note that 1,(C,T,) = m € N if and only if P(a +t,b+ ¢'(a)t, 1) is divisible by ™ but not t™+!. We deduce that
I,(C,T,) = n if and only if v¢(p) = n. "

Theorem 3.13. Degree-Genus Formula

Suppose that C' is a non-singular projective curve of degree d. Then the genus of C' is given by

g=5(d-1)(d-2)

1
Remark. One proof of the theorem is to explicitly construct a non-singular curve D of degree d with genus g = 5 (d—1)(d-2).
And then use the idea of the proof in Proposition 3.11, that is, connect C' and D by a path in the space of non-singular
curves of degree d and argue that they are diffeomorphic. We take another proof here, which uses the Riemann-Hurwitz

Formula above.

Proof. If d =1, then we already know that C' is homeomorphic to the Riemann surface, and hence g = 0. Now suppose that
d>=2.

We can choose coordinates such that [0: 0 : 1] ¢ C. Consider the meromorphic function f : C' — CP' in the previous
lemma. By the lemma, for p € C, vy(p) > 2 if and only if I,(C,T,) > 2, if and only if p is an inflection point of C.
We know that C' has finitely many inflection points. So we can apply a projective transformation such that [0: 0 : 1]
does not lie on any tangent line to C at the inflection points. Therefore v¢(p) = 2 at every ramification point of f.

Next we shall show that f has exactly d(d — 1) ramification points. Let C be defined by P and D be defined by 9. P.
From the proof of the above lemma, we note that p is a ramification point of f if and only if p € C N D. We need to
verify that the conditions in Corollary 2.11 of Bézout’s Theorem are satisfied.

Let p = [ag : a1 : az] € C N D. Now (azamP, 0.0, P, GEP) is not identically zero at p because this would make
the Hessian of C vanish and we know that p is not an inflection point. This shows that D is nonsingular here.
Suppose that the tangents of C' and D coincide then (0,0, P,d.0,P,02P) is a multiple of (0,P,d,P,0.P). As in
the proof of Proposition 2.13, we use the quadratic form B defined by the matrix of partial derivatives 9;0;P. Then
B(a,a) = 0 = B(a, ) where the tangent line joins p and ¢ := [ap : a1 : ag] Put v = (0,0,1). By the Euler’s Relation

a90,0; P + a10,0, P + a30?P = (n — 1)0,P = 0

since 9,P(ag,a1,az) = 0. This gives B(a,v) = 0. Moreover since 92(ag,a1,as) = AJ.P(ag,a1,az) = 0, we have
B(v,v) = 0. Since p is not an inflection point, det B # 0 so from

0 = B(a,a) = B(a,a) = B(a,v)
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We deduce that v = pa + va. But then
0= B(v,v) = v*B(a, )

and, as in the proof of Proposition 2.13, this gives det B = 0 unless v = 0. But then p = [0 : 0 : 1] which we have
specifically excluded. We conclude that the tangents are distinct and the conditions for Corollary 2.11 of Bézout’s
Theorem hold. Since C' has degree d and D has degree d — 1, we deduce that card(C N D) = d(d — 1).

Finally, we note that f has d(d — 1) ramification points, each of which has ramification index 2. By Riemann-Hurwitz
Formula,
2 — 29 = x(X) = dx(CP") — b(f) = 2d — d(d — 1)

1
We deduce that g = §(d —1)(d—-2). O

As predicted by the degree-genus formula, a cubic curve with degree 3 is homeomorphic to a torus with genus 1. We give an
explicit construction to this fact.

Example 3.14. Weierstrass p-Function and Cubic Curve

We wish to construct an explicit homeomorphism from a torus X to a cubic curve C' on CP?.

Proof. Fix w1, ws € R which are linearly independent over C. Consider the lattice A := {mw; + nws : m,n € Z} C C. We
define the Weierstrass p-function to be

SRERPIN i)

From Complex Analysis we can show that p is meromorphic and is doubly-periodic with respect to A. So we can take
© as a meromorphic function g : C/A — CP'. Tt has 4 ramification points: 0, w;.2, wa/2, and (w1 + w2)/2. We put

w1 w2 w1 + w2
w2 mlZ) (2]

We can prove by Complex Analysis that ©’(z) is a cubic polynomial such that

0 (2)> =4(z —e1)(z — e3)(z — e3)
which corresponds to an affine cubic curve in C?:
y? =4(x —e1)(z — ez)(x — e3)

Now g : C/A — CP! is surjective by Riemann-Hurwitz Formula. Moreover, since p(—z) = p(z), ¢'(—2) = —¢'(2) so
for each value of x there is a z for both values of y.

Therefore z — [p(2), ' (2),1] defines a homeomorphism from C/A to C, where C/A is topologically a torus by
construction. O
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4 Riemann-Roch Theorem

4.1 Divisors and Differentials

e N
Definition 4.1. Divisors

Suppose that C is an algebraic curve in CP?. A divisor D on C is a formal sum

D:anp

peC

where n, € Z for each p € C' and n, = 0 for all but finitely many points.
All divisors on C form a free Abelian group on the set C.

The degree of D is defined by
deg D := Z ny

peC
\\ J/

Suppose that f : ¢ — CP! is a non-zero meromorphic function on the algebraic curve C. Suppose that f has zeros at
P1, ---, Pk with multiplicities my, ..., my and poles at g1, ..., g¢ with multiplicities nq,...,ny. Then we define the divisor of f

to be
k ¢
div(f) ==Y migi = > _nigi
i=1 i=1

We note that div(f) determines f up to a scalar multiple. Because if div(f) = div(f), then f/ f is a holomorphic function
on C. Since C' is compact, by Liouville’s Theorem f/f is constant.

We note that if f : C — CP' is meromorphic, then degdiv(f) = 0, because the number of zeros (counting multiplicity) is
F71({0}) and the number of poles (counting multiplicity) is f~*({co}). The two numbers are equal to the degree of f.

4 3\
Definition 4.2. Effective Divisors, Principal Divisors, Linear Equivalence

A divisor D = Zp npp is called an effective divisor, if n, > 0 for all p.

We write D > D’ if D — D’ is an effective divisor.

A divisor D is called a principal divisor, if D = div(f) for some meromorphic function f : C' — CP'.

Divisors D, D’ are said to be linearly equivalent, if D — D’ is a principal divisor. We write D ~ D’.

Remark. Since degdiv(f) =0, we have deg D =deg D’ if D ~ D’.

[ Definition 4.3. Vector Space L(D) ]

Let D be a divisor on the algebraic curve C. We define £(D) to be the set of meromorphic functions f such that
div(f) + D > 0 together with the zero function. Then £(D) is a finite-dimensional vector space. We denote ¢(D) :=
dim £(D).

Proposition 4.4. Properties of £(D)
1. L£(D) is a finite-dimensional vector space.
2. If deg D < 0, then £(D) = {0}.
3. It D ~ D', then {(D) = £(D").

4. The projective space P(L(D)) is in bijective correspondence with the effective divisors equivalent to D.
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Proof. 1. We write D as
k ¢
D = Zmipi - ZniQi
i=1 i=1

where p1, ..., Pk, @1, .., q¢ € C and mq,...,mg,n1,...,ng € Zy. Then L(D) is the set of meromorphic functions
f which have poles of order < m; at p;, and zeros of order > n; at ¢; (together with the zero function). This
clearly forms a vector space.

To show that £(D) is finite-dimensional, we write f € £(D) at each pole p; in local coordinate z:
F(2) =iz + hi2)
j=1

where h; is a holomorphic function in an open neighbourhood of z = 0. This defines a map ¢; : L(D) — C™i,
f = (ai1,...,04m,) for each pole p;. We have ¢ : L(D) — C™ x --- x C™ given by ¢ = (1, ...., ). Note that

k
f€kerp= ﬂ ker p; = f is holomorphic on C = f = const
i=1

Hence dimker ¢ < 1. By Rank-Nullity Theorem, we deduce that dim £(D) < oo.
2. It div(f) + D > 0, then 0 < degdiv(f) + deg D = deg D.

3. If D = D’ + div(g) for some meromorphic function g : C' — CP', then f — fg defines an isomorphism from
L(D) to L(D).

4. From the discussion below Definition 4.1, P(£(D)) is in bijective correspondence with the set of divisors
{div(f) : f € LID)\ {0}}.

For each f € £(D)\{0}, by definition div(f)+ D is an effective divisor and is linearly equivalent to D. Conversely,
if D ~ D" and D’ is effective, then there exists a meromorphic function f such that div(f)+ D = D’ > 0. Hence
f e L(D). O

-
Definition 4.5. Meromorphic Differentials

Suppose that X is a Riemann surface. Let f,g be meromorphic functions on X. The meromorphic differential fdg is
an equivalence class such that

fdg=fd§ <= (fop V(909 ) =(fop ™) (GopY)

for any coordinate chart (U, ¢) on X.

\ J/

Remark. Alternatively, we can define a meromorphic differential n on C' to be a collection of meromorphic functions
{n; : ¢i(U;) — CP' | i € I'} on the open subsets of C, such that for z € U; N Uj,
miopi(r) =n;00;(x) - (9500, 1) (i(x))
In such sense, we have fdg = n, where
ni=(foe ') (9097)

From the definition, we see immediately that the integral of meromorphic differential along a path - is well-defined:

fo o

For two meromorphic differentials 7 and ¢, where ¢ is not identically zero, the ratio n/{ gives a well-defined meromorphic
function f : X — CP' such that
noeu(x)
fla) = ———=
Copu(z)
for any coordinate chart (U, ¢y ) with « € U. We write n = f( in this case.
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Definition 4.6. Canonical Divisors

Suppose that w = fdg is a non-zero meromorphic differential on the algebraic curve C. Then we define the zeros
/

and poles of w to be those of (f o go’l) (g o gp’l) , which are well-defined. So we can define the divisor div(w) just as

meromorphic functions.

A divisor « is called a canonical divisor, if k ~ div(w).
\\ J/

We note that, if n and ¢ are meromorphic differentials, let f := 7/ and then
div(n) = div(f¢) = div(f) + div(C) ~ div(¢)

So all canonical divisors are linearly equivalent and have the same degree.

Proposition 4.7. Degree of Canonical Divisor

Suppose that C' is a non-singular projective curve on CP? of genus g. Then the degree of a canonical divisor & is

degrk =29 —2

Proof. Choose coordinates such that [0:0: 1] ¢ C. Let C be defined by the homogeneous polynomial P. Then 9, P vanishes
at finitely many points. By applying a projective transformation we assume that if P(a,b,c) = 9.P(a,b,c) = 0 then
b#0.

Consider the meromorphic function f : C — CP', [z : y : 2] — [z : y]. We shall count the zeros and poles of the
meromorphic differential df. At a point [a:b:c] € C:

o If9.P(a,b,c) # 0 and b # 0, we take w = z/y as a holomorphic coordinate on CP'. Then df = dw has no zeros
or poles.

o If b =0, then a # 0 and 9,P(a,b,c) # 0. Take w = y/x as a holomorphic coordinate on CP'. df = —w2dw
has a pole of order 2. Note that y = 0 is nonwhere tangent to C. By Corollary 2.11 of Bézout’s Theorem, there
are exactly d such points on C.

o If 9.P(a,b,c) =0, then [a : b: ] is a ramification point of C. By the proof of degree-genus formula, there are
d(d — 1) such points, each with ramification index 2. Therefore df has exactly d(d — 1) simple zeros.

We deduce that df has d(d — 1) simple zeros and d double poles. By degree-genus formula,

deg k = degdiv(df) =d(d—1) —2d = 2g — 2 O

4.2 Proof of Riemann-Roch Theorem

In this subsection, we fix C' to be a non-singular projective curve in CP? of genus g. We fix & to be a canonical divisor on

C.

'd )

Definition 4.8. Divisor Class H

Suppose that L is a line in CP?. We consider the divisor defined by

H= Y 1,(CLp

peCNL

By Bézout’ Theorem we know that deg H is the degree of the curve C.

. J

Note that if L : ax + by +cz=0and L' : d’x + by + ¢’z = 0 are two lines, then

ax + by + cz
adx+by+cz

is a meromorphic function. So the divisor H of the line L is linearly equivalent to the divisor H' of L'.

First we investigate the structure of L(mH).
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Proposition 4.9. Dimensional of £L(mH)

Let the divisor H given by the above definition. We have

{(mH) > deg(mH) —g+1

Proof. Suppose that C' has degree d. Let C be defined by P(z,y,z) = 0 and L by R(z,y,z) = 0. If Q(z,y,z) is any
homogeneous polynomial of degree m then

Q("L‘7 y7 Z)
R(z,y,2)™

defines a meromorphic function f on C such that div(f) + mH > 0, that is, an element of L(mH). Moreover, two
such polynomials define the same function on C' if and only if their difference is divisible by P(z,y, z). Let Cg[z,y, 2]
denotes the space of homogeneous polynomials of degree k in x,y, z. Then

Z(mH) 2 dim ((C’m[x7 Y, Z]/P(J?, Y, Z)(Cm—d[x7 Y, Z])
=dimC,,[z,y, z] — dim C,,,—_4[z, y, 2]
1

:§(m+1)(m+2)—%(m—d+1)(m—d+2):md+%d(3—d)

By degree-genus formula, d(3 — d)/2 =1 — g. And we know that md = deg(mH). We deduce that

l(mH) > deg(mH) —g+1 O

Lemma 4.10

A meromorphic differential on a compact Riemann surface cannot have a single simple pole.

Sketch of Proof.
Suppose for a contradiction that p is the simple pole of the differential w. It has non-zero residue and so taking a
coordinate neighbourhood of p, and surrounding it with a small contour I', we have

foro

Now triangulate C' such that each triangle lies in a coordinate neighbourhod and p lies in the interior of one triangle,
Ay. By Cauchy’s theorem the integral of w around each triangle A; (i # 0) is zero and the integrations along adjacent
edges of different triangles cancel (like the proof of the Gauss-Bonnet Theorem). But then the integral around Ag
vanishes which is a contradiction. O

Lemma 4.11

Let D be a divisor on C. For any point p € C,

0<{D+p)—l(k—D—p)—¢D)+{(k—-D)<1

Proof. Firstly f € £(D) if and only if div(f)+ D > 0 which clearly implies that div(f)+D+p > 0, so that £L(D) C L(D +p)
and

D +p) = UD).

Suppose that

k ¢
D= Zmipi - Zni%’
i—1 i=1

Take f € L(D + p). If p is not one of the p; or ¢; then f has at most a simple pole at p. The condition for f to lie
in £(D) is thus a single linear condition, the vanishingof the coefficient of (z — a)~!. If p = p;, then in the Laurent
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expansion around p we have:

fz) = (Zi‘rzﬁ o (G )

and here for f to lie in £(D) is the vanishing of a,, 1. If p = ¢; then f has a zero of order at least (n; — 1) at ¢; and
to lie in £(D), must have a zero of order n;. This is again one linear condition. In all cases we see that

D +p)<UD)+1
Applying this to D and k — D — p, we see that the lemma holds so long as we can eliminate the case
{D+p)—¢D)=1and l(k —D)—¥l(k—D—p)=1

Suppose for a contradiction that this holds. Then there is a meromorphic function f with div(f) 4+ D + p > 0 but
—div(f) + D = 0, so —p is the only negative term in div(f) + D. Similarly there is g such that div(g) + k —D >0
but div(g) + k — D — p 2 0 which means that p does not appear in the divisor div(g) + x — D. Thus in

0<div(f)+ D+p+div(g) + «— D =div(fg) + s +p

the positive element p is not cancelled.

But & is the divisor of a meromorphic differential w, which means that fgw is a meromorphic differential with a single
simple pole at p. This is impossible by the previous lemma. O

Theorem 4.12. Riemann-Roch Theorem
Let D be a divisor on C. Then
{D)—4(k—D)=degD —g+1
Proof. We shall show that
UD)—4(k—D)>degD —g+1
Suppose that

k ¢
D= mipi— Y nig;
i=1 i=1

We choose lines a;x + b;y + ¢;z = 0 that pass through the points p;. Then the divisor (as in Definition 4.8) of

k

H(aix + by +ciz)™
i=1

is of the form
k N s
S+ 3= D+ Y
i=1 j=1 i=1
where x4, ...,x, € C. Furthmore,

S
D+ Z x; ~ moH
i=1
k s
where mq := Z m;. By adding more points to D + Z x;, we can choose sufficiently large m > mg such that
i=1 i=1

deg(k —mH) =29 —2—mdegH <0 and D+in~mH
i=1

By Proposition 4.9, we have

E(D—f—zr:mi) —€<R—D—ixi> ={4(mH) —{(k —mH) ={(mH)

i=1 i=1
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2deg(mH)—g+1:deg<D+in> —g+1l=degD+r—g+1

i=1

From the previous lemma,

r r r—1 r—1
é<D+in> —E(I{—D—Zl’l) <€<D+Zzi> —£<H—D—in> +1
=1 =1 =1 =1

Repeating the process r times, we have

€<D+Zzi> K(nDZz,;) <UD)—4(k—D)+r
i=1 i=1
Combining the above inequalities,

UD)—lk—D)+r>=degD+r—g+1

which proves our claim.

Now it remains to show the reversed inequality. We replace D by x — D in the above equation:
lk—D)—4D)>deg(k—D)—g+1=29g—2—degD—g+1=—degD+g—1

We conclude that

UD)—4(k—D)=degD —g+1 O
4.3 Applications
( Definition 4.13. Holomorphic Differentials 1
l A meromorphic differential on a Riemann surface is called a holomorphic differential, if it has no poles. J

Corollary 4.14. Holomorphic Differentials and Genus

The vector space of holomorphic differentials on a non-singular projective curve in CP? has dimension g, the genus of
the curve.

Proof. The vector space is L(k), where & is a canonical divisor. We take D = 0 and use Riemann-Roch Theorem:
(0) —Ll(r)=1-g

We note that £(0) is the space of holomorphic functions on C, which are constants and hence 1-dimensional. It
follows that £(k) = g. O

Remark. We can actually write down these differentials. First consider the affine part of the curve given by P(z,y,1) = 0.
Then z is a local coordinate where 0y P # 0 so consider the differential

dx

v ayfwxayal)

At first sight this seems to have poles where the denominator vanishes but this is just where the role of x as a local coordinate
breaks down. Since the curve is nonsingular, at such points d, P # 0 and from the chain rule, on the curve d, Pdz+0, Pdy = 0,
so that w can also be written, using y as a coordinate, as

dy

YT 0, P(x,y, 1)

This form has no poles and no zeros in the affine part of the curve. Now look at C' near z = 0. We have

d(z/z)  _ d(z/z) _ —d(z/z)(x/2)>

OyP(x/zy/21)  9,P(Ly/w,z/x)(w/z)""t — 9,P(Ly/w,z/x)(x/z)"""

30



and so

—z"3dz

“ T 0,P(Ly,2)

and has a zero of order n — 3 where z = 0. This tells us that x ~ (n — 3)H, and so we can obtain a holomorphic differential
by writing

Q(z,y,1)dx
8yp<x7 yv 1)

for a homogeneous polynomial Q(z,y,z) of degree n — 3. The dimension of the space of polynomials of this degree is
(n—2)(n—1)/2 which is g from the degree-genus formula. Riemann-Roch Theorem therefore tells us that every holomorphic
differential is obtained from a polynomial this way.

Theorem 4.15. Chow’s (Ji#i k) Theorem

The meromorphic functions on a non-singular projective curve in CP“ are rational.

Proof. Let C' be a non-singular projective curve of degree d (and genus g). We consider the vector space L£L(mH) with
m > d — 3. Note that
deg(k —mH)=29g—2—md=d(d—m—3) <0

By Riemann-Roch Theorem, we have
l(mH) =deg(mH) —g+1

But by the proof of Proposition 4.9, we have seen that the subspace of £L(mH) in which every meromorphic function
is of the form
Q(z,y, 2)

R(z,y,z)™
has dimension deg(mH) — g + 1. Therefore every meromorphic function in £(mH) is given by that form.

Now let f be a meromorphic function on C. Take lines L; that pass through the poles p; of f. We have, for some
m €N,

The same argument shows that f is a rational function. O

Theorem 4.16. Abel’s Theorem on the Group Law of Cubics

Let C' be a non-singular cubic curve on CP?. Let e be an inflection point on C. There is an unique additive group
structure on C such that e is the identity and p; + p2 +ps = 0 if and only if p1, p2, ps are the three points of intersection
(counting multiplicity) of C' with a line.

Proof. The addition of divisors is commutative and associative. This is also true of their linear equivalence classes since if
p=p+(f),q=q + (g9) then p+q=p +¢ + (fg). We noted earlier that p is linearly equivalent to q only if g = 0,
so for any curve C of genus g > 0 the equivalence class of p determines p uniquely. We could also use Riemann-Roch
Theorem: if D = p then since deg D =1 > 0 = degk we have {(x — D) = 0 and

(D)y=1+1-1=1

For the cubic, with g = 1, we take an inflection point e and map p — [p — €] into the group of equivalence classes of
degree zero divisors. From the above, this is injective. Moroever [e — ¢] = [0] is clearly an identity.

Then p 4+ ¢ maps to [p + g — 2¢] and we want to show that this is of the form [s — e]. The line ax + by + cz = 0
joining p and ¢ (or the tangent at p if p = ¢) meets the degree 3 curve in a third point r by Bézout’s theorem. Let
a'z + by + ¢’z =0 be the tangent at e, then the divisor of its intersection with C' is 3e since e is an inflection point.
If f=(ax+by+cz)/(d'z+by+z), the divisor of f is

(f)=p+q+r—3e

which shows that [p+ ¢ — 2e] = [e — r]. Now take ¢ = e in this expression, then [p — e] = [e — p'] for some p’ which
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we call the inverse of p. In general then
p+a—2=le—r] =]~

as required, proving that C' is closed under the addition law.
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