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In these problems K denotes an arbitrary field and K[x] denotes the ring of polynomials in one variable x over K. If p is a prime
number, then [, denotes the field of integers modulo p.

Question 1

Find the Galois groups of the following polynomials over Q :

(@) x°

—2x3—x2+2;

b) x°-2;

(©) x°—-4x+2.

Proof. (a)

(b)

(©)

Note that f(x) := x° — 2x® — x* + 2 has the factorisation over Q:

-2 - +2=(x-D*-2)(x*+x+1)
Hence the roots of f in C are 1, V2, =2, w, w?, where w is a primitive third root of unity. Hence the splitting field of f
over Q is @(\/E, w).

It is clear that [@(\/Z) : Q] =2 and that [QJ(\/Z w): @(\/Z)] = 2. The latter is because w ¢ R 2 @(\/E) and w has minimal
polynomial with degree 2 over Q. Hence by tower law [Q(w, v/2) : Q] = 4. Since Q is separable, this is a Galois extension.
|Gal (f)| = 4. Consider o € Gal(f) that swaps » wiuth w? and fixes all other roots, and 7 € Gal(f) that swaps V2 with
—V/2 fixes all other roots. o and 7 are of order 2 in Gal(f). Hence Gal (f) = V, =Z/2Z x Z/2Z. J

The set of roots of x> —2 in C are {21/5¢: (> =1}. Fix( e Ctobe a primitve fifth root of unity. Observe that [Q({): Q] =4
because the minimal polynomial of { over Q is ®5(x) = x* + x3 + x> + x + 1.

Next, f splits over @(2” 5 ¢), which is a Kummer extension over Q({). Therefore we have a (non-trivial) monomorphism
Gal(Q2Y%,0) Q) — us(@Q() = Z/5Z. Since Z/5Z is simple, we have Gal (Q(2'/,0)) = Z/5Z.

By Galois correspondence and tower law, we have

|Gal (Q2'%,0) 1Q)| = 1022"°,0): Q1 = [Q(2"%,0) : QIQE) : Q] = 20

By the three Sylow theorems, G := Gal (Q(2/5,() | @) has a unique Sylow 5-subgroup Gal (Q(2!/%,0) | Q({)), which is nor-
mal. This subgroup is generated by the Q-automorphism y € G such that y(2!/%) = 21/5¢ and y({) = ¢.

Consider another Q-automorphism § € G such that (2/%) = 2!/> and B({) = ¢2. Itis clear that G = (y) (8) and (y) n{(B) =
{id}. Therefore G is a semi-direct product: G = (y) X, () for some ¢ : () — Aut({y)).

To determine ¢, we simply note that %o (21/°) = Boy(2!/%) = 21/5¢2 and y? 0 B({) = Boy(() = (. Hence y*> = foyo L.
Therefore ¢(f) is the inner automorphism of G that maps y to y2.

We conclude that Gal (f) = (y) X () = Z/5Z x, Z/AZ, where ¢ : Z/5Z — Aut(Z/4Z) is given by () : y — y>. J
We claim that f(x) := x> —4x + 2 has exactly 3 real roots. Then by Proposition 6.5 we have Gal (f) = Ss.

Note that f(-2) = =22, f(0) =2, f(1) = -1, f(2) = 26. By intermediate value theorem f has at least 3 real roots. The

derivative of f is f’(x) = 5x* — 4. It has exactly two real roots +(4/5)!4. f can change its monotonicity 2 times, and

hence has at most 3 real roots. This proves the claim. \/ . O
Nice

®

Question 2

In this exercise you will complete the characterization of finite fields. Let L be a finite field. Recall that there exists a prime
number p, and a positive integer n such that |L| = p”. Recall that (L*,-) is a cyclic group.

(a) Show that there exists an irreducible polynomial g(x) € F,[x] such that L = F[x]/(g(x)).

(b) Show that L is a Galois extension of F p-

(c) Show that, up to isomorphism, there exists a unique finite field of cardinality p”. This finite field is denoted by [F ,n.

(d) Show that the map ¢ : F,» — F,» defined by ¢(y) := y” is an automorphism of F,». This map is called the Frobenius



automorphism.
(e) Show that I (F,»:Fp) = (Z/nZ,+).
(f) Deduce that there is exactly one subfield of [ ,» for any divisor d of 7.
(® Let f €Fplx] be an irreducible polynomial. Show that f splits into linear factors in F ,deg( -
Proof. (c) We know that L™ is a cyclic group of order p” — 1. Hence any a € L satisfies aP"~1 —1 = 0 and hence is a root of
fx) = X" —xe Fplx]. In addition, 0 € L is also a root of f. Hence f splits over L and L is exactly the set of all roots of

f- Hence L is the splitting field of f over F,. By Theorem 3.13, all splitting fields of f over [, is isomorphic. Hence the
finite field of cardinality p™ is unique up to isomorphism. /

(a) Since L is the splitting field of xP" - x over Fplx], by Question 2 of Sheet 3, there exists an element a € L such that
L=Fp(a). Let g € Fp[x] be the minimal polynomial of a. Then g is irreducible and L = Fp (a) = Fp[x]/ (g (x)). J

(b) Lis the splitting extension of f over [, and we know that f is separable. By Theorem 3.18 L | ), is a Galois extension. J
(d) The proof that @ — a? is an automorphism of ;= is essentially the same as the proof in Question 6 of Sheet 1.
For a, B € Fpn,

P !
p: k gp—k
P=aPgP, +B)P = P=K — qP + BP
(ap)’ =a’p (a+p) kZ:Ok!(p—k)!a p a’+p

!

ﬁ is divisible by p for 1 < k < p — 1. Therefore ¢ is a ring homomorphism. Since
e_ . - .

ond O '01” =1, ker¢ = {0}. ¢ is faithful. Since [~ is finite, ¢ is bijective. We conclude that ¢ is an automorphism of Fn. \/

We have used the fact that

(e) First we note that the Frobenius automorphism fixes elements in [, because [ is the prime subfield of [F», and
¢(1) = 1 implies that ¢ (k) = k for all k € F,. Hence ¢ € Gal (Fp,» | Fp).

Second, we claim that ¢ has order n in Gal (Fp» | F)). For a € Fppn,
P a@)=a’ =a = ¢"=id

In addition, if ¢* = id for some k < n, then x”" — x has p” distinct roots in F pn, which is impossible.

Finally, by the fundamental theorem |Gal(F,n |F,)| = [Fpn : F] = n. We deduce that ¢ generates Gal(F,» |F,) and
hence Gal (Fp» |F,) =Z/nZ. J

(f) For any d with d | n, Z/nZ has a unique subgroup of order d. By the Galois correspondence, there is a unique subfield
MOf[Fpn such that [[Fpn ‘M]=d. \/

(g) Let n=degf. Let a be aroot of f in its splitting field. Then f is the minimal polynomial of @ over [, and F» =Fj ().
Using the Frobenius automorphism, we find that a?, a”z R 14 " are also roots of f. Since deg f = n, we have in fact

n-1 ;
f=[]&x=-a”)
i=0
in F,n. Hence f splits over F n, J
’ ’ Greoak @
Question 3
Let p be an odd prime, K = F, (), and f= x*—reKlx].
(a) Find the splitting field E of f distinguishing the cases p =1 mod 4 and p =3 mod4.
(Hint: if ¢ is aroot of f, find ¢ € E such that ca is a root of f)

(b) Write down a set of generators for I'(E : K) distinguishing the cases p =1 mod 4 and p =3 mod 4.

(c) Inthe case p =1 mod 4 write down the Galois correspondence for E : K and I'(E : K).



Proof. (a) Inthe splitting field of f, we have
0 = (= " (x— w0t (- 0? 1Y (x— 03 111
where o is a primitive fourth root of unity.
When p = 1 mod 4, [, is a cyclic group whose order is divisible by 4. Hence K contains all fourth roots of unity. The
splitting field of f over K is K(¢'/#), which is degree 4 over K. \/
When p = 3 mod 4, the order of F, is divisible by 2 but not 4. Then the splitting field of x* -1 is K(w), which is a
quadratic extension K. The splitting field of f over K is K(t'/4,w), which is degree 8 over K. /

(b) When p = 1mod 4, E | K is a Kummer extension. By Lemma 5.6 there exists a group monomorphism Gal(E | K) —
1a(K). Since | Gal (E | K)| = 4, we deduce that Gal (E | K) = u4(K) = Z/4Z. Gal(E | K) is generated by the K-automorphism
given by y: t1/4— /2 2 You mean t'/4 = wt"/4
When p =1 mod 3, E | K(w) is a Kummer extension. It is easy to observe that Gal (E | K) is generated by y and o, where
y maps ¢4 to t'/? and fixes v, and o maps o to w® and fixes t'/4. We have Gal(E | K) = Z/4Z x Z/2Z.

SaMme mistone hene showkd be ? t%c? 1S non-olodion, S 0TFTO

(¢) Gal(E|K) = u4(K) = Z/4Z has a unique non-trivial proper subgroup, and hence has a unique intermediate field.
The Galois correspondence is given by

K < K@ < k@t
» =2 o =2 {id J
Grood worR O
Question 4

Let L/K be a finite separable extension of field. Define a Galois Closure M of L/K as a minimal degree extension of L for which
M/K is Galois. Show that the Galois Closure of L/ K exists and is unique up to isomorphism. Show that the set of K invariant
embeddings homg (L, M) of L in M is in natural bijection with the set of right cosets of I'(M : L) in I'(M : K).

Proof.

By primitive element theorem, L | K is a simple extension. There exists a € L such that L = K(«a). Let f € K[x] be the minimal
polynomial of a. By definition f is separable. Let M be the splitting field of f over K. By Theorem 3.18 M | K is a Galois
extension. We claim that M is a the Galois closure of L | K.

Since M is the splitting field of the minimal polynomial of «, then @ € M. Hence L = K(a) € M. Suppose that F is an extension
of L such that F | K is a Galois extension. By Theorem 3.18, F | K is a normal extension. a € L € F implies that f splits over F.
Hence F contains a splitting field of f over K. As all splitting fields of f are K-isomorphic, we deduce that M is an extension
of L of minimal degree such that M | K is a Galois extension. Finally, since all Galois closures of L | K are splitting fields of f,

they are K-isomorphic. J | FinR Vhe
notaxion 15

The notation Homg (L, M) seems ambiguous, since it normally refers to the set of all K -linear maps from L to M. \)“5’5 invented

me Qun
First we fix an embedding ¢ : L — M. For y € Gal (M | K), we define ®(y) :=y ot € Homg (L, M). We claim that ® is a bijective

from the set of right cosets of Gal (M | L) in Gal (M | K) to Homg (L, M).

* Fory,feGal(M|K),

Yoi=pfoiL < youi(a) = foila)
— B loyoua) =)
— B Loy fixes (L)
— B loyeGal(M|L)
<~ Gal(M|L)p=Gal(M| Ly

Hence @ is well-defined and injective.

e For o0 € Homg (L, M), the assignment ((a) — o(a) extends to a K-isomorphism y € Gal (M | K) with yo(a) = o(a). Since
L=K(a), then 0 =yo1=®(y). Hence @ is surjective. ‘/ O



Question 5

Let ¢ be a positive integer, p be a prime number, and f, = 2 +le Fplx]. If N > 11is an integer, we denote by U(Z/NZ) the set
of invertible elements of the ring Z/ NZ. Recall that (U(Z/NZ),-) is a multiplicative group.

(a) Show that any polynomial of degree 2 in [, [x] splits in [sz [x].

(b) Show that for p = 3 the polynomial f; is irreducible in F3[x] and give a construction of the field F32.

(c) Show that the splitting field of f is isomorphic to the splitting field of 1€ Fplxl.

(d) Prove that for p =5 the polynomial f, € F5[x] is reducible.

(e) Show that there exists an integer ¢ such that for any prime number p, the polynomial f; is reducible in [, [x].

(Hint: show first that (U (Z/2"2),-) is not a cyclic group if n = 3).

Proof. (a)

(b)

(©

(d)

(e

Let f € Fp[x] with deg f = 2. If f is irreducible, then f splits over [ > by Question 2.(g). If f is reducible, then f already
splits over [F,. Since F, =F 2, f also splits over F .. ‘/

filx) = x? +1 eF3[x]. Since f10) =1, f1(1) =2, f1(2) =2, then fj has no roots in F3. Hence f; is irreducible in F3[x]. The
splitting field of fi over F3 is F3[x]/ (x? + 1) = F3, also as a result of Question 2.(g). /

Note that
¢

2l+1 2l £
x _1=(x—1)1_[(x +1)=(x—1)]_[fi(x)

i=0 i=0

For simplicity consider the algebraic closure E of Fp. The set of roots of f; in E is exactly

{1

$

J0ed

X . —
Observe that G; < G+ for each i € N. We find that f, and x2""" — 1 has the same set of roots in [F». Hence their splitting
fields are isomorphic. (e \Nowe

LA ,
2 _ \11':16&0:‘\\ % ol tooVs q‘- x ol S?\ c.e\cko‘: Fl
In F5[x], we have Gz @l
@ =xt+1=(*+2)(x*+3)

Hence f € F5[x] is reducible. \/

In Question 3.(b) of Sheet 3 we have proven that 24 | p? — 1 for all primes p > 3. Hence 8 | p? -1 for all odd primes. Since
[F;2 =7/(p?-1)Z, then F,2 contains all eighth roots of unity. Hence x8 —1 splits in Fp2[x]. By part (¢), f2(x) = x* +1also
splits in F 2 [x]. Suppose that f; is irreducible in Fj[x]. Then for any root a of f, we have [F,(a) : F)] = deg f> = 4. But
[F,2 :Fp] =2, which is a contradiction. Therefore f; is reducible in F, [x] for all odd primes p. Finally, f>(x) = (x>-1)%¢€
F2[x]. Hence f> is reducible in > [x]. We deduce that f is reducible in every [, [x]. J O



