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In these problems K denotes an arbitrary field and K [x] denotes the ring of polynomials in one variable x over K . If p is a prime
number, then Fp denotes the field of integers modulo p.

Question 1

Find the Galois groups of the following polynomials overQ :

(a) x5 −2x3 −x2 +2;

(b) x5 −2;

(c) x5 −4x +2.

Proof. (a) Note that f (x) := x5 −2x3 −x2 +2 has the factorisation overQ:

x5 −2x3 −x2 +2 = (x −1)(x2 −2)(x2 +x +1)

Hence the roots of f in C are 1,
p

2, −p2, ω, ω2, where ω is a primitive third root of unity. Hence the splitting field of f
overQ isQ(

p
2,ω).

It is clear that [Q(
p

2) : Q] = 2 and that [Q(
p

2,ω) : Q(
p

2)] = 2. The latter is because ω ∉ R ⊇ Q(
p

2) and ω has minimal
polynomial with degree 2 over Q. Hence by tower law [Q(ω,

p
2) :Q] = 4. Since Q is separable, this is a Galois extension.

|Gal
(

f
)| = 4. Consider σ ∈ Gal

(
f
)

that swaps ω wiuth ω2 and fixes all other roots, and τ ∈ Gal
(

f
)

that swaps
p

2 with
−p2 fixes all other roots. σ and τ are of order 2 in Gal

(
f
)
. Hence Gal

(
f
)∼=V4 =Z/2Z×Z/2Z.

(b) The set of roots of x5 −2 in C are {21/5ζ : ζ5 = 1}. Fix ζ ∈C to be a primitve fifth root of unity. Observe that [Q(ζ) :Q] = 4
because the minimal polynomial of ζ overQ is Φ5(x) = x4 +x3 +x2 +x +1.

Next, f splits overQ(21/5,ζ), which is a Kummer extension overQ(ζ). Therefore we have a (non-trivial) monomorphism
Gal

(
Q(21/5,ζ) |Q(ζ)

)→µ5(Q(ζ)) ∼=Z/5Z. Since Z/5Z is simple, we have Gal
(
Q(21/5,ζ)

)∼=Z/5Z.

By Galois correspondence and tower law, we have∣∣Gal
(
Q(21/5,ζ) |Q)∣∣= [Q(21/5,ζ) :Q] = [Q(21/5,ζ) :Q(ζ)][Q(ζ) :Q] = 20

By the three Sylow theorems, G := Gal
(
Q(21/5,ζ) |Q)

has a unique Sylow 5-subgroup Gal
(
Q(21/5,ζ) |Q(ζ)

)
, which is nor-

mal. This subgroup is generated by theQ-automorphism γ ∈G such that γ(21/5) = 21/5ζ and γ(ζ) = ζ.

Consider anotherQ-automorphismβ ∈G such thatβ(21/5) = 21/5 andβ(ζ) = ζ2. It is clear that G = 〈γ〉〈β〉 and 〈γ〉∩〈β〉 =
{id}. Therefore G is a semi-direct product: G = 〈γ〉nϕ 〈β〉 for some ϕ : 〈β〉→ Aut(〈γ〉).

To determineϕ, we simply note that γ2 ◦β(21/5) =β◦γ(21/5) = 21/5ζ2 and γ2 ◦β(ζ) =β◦γ(ζ) = ζ2. Hence γ2 =β◦γ◦β−1.
Therefore ϕ(β) is the inner automorphism of G that maps γ to γ2.

We conclude that Gal
(

f
)= 〈γ〉n 〈β〉 ∼=Z/5ZnϕZ/4Z, where ϕ :Z/5Z 7→ Aut(Z/4Z) is given by ϕ(β) : γ 7→ γ2.

(c) We claim that f (x) := x5 −4x +2 has exactly 3 real roots. Then by Proposition 6.5 we have Gal
(

f
)∼= S5.

Note that f (−2) = −22, f (0) = 2, f (1) = −1, f (2) = 26. By intermediate value theorem f has at least 3 real roots. The
derivative of f is f ′(x) = 5x4 − 4. It has exactly two real roots ±(4/5)1/4. f can change its monotonicity 2 times, and
hence has at most 3 real roots. This proves the claim.

Question 2

In this exercise you will complete the characterization of finite fields. Let L be a finite field. Recall that there exists a prime
number p, and a positive integer n such that |L| = pn . Recall that (L∗, ·) is a cyclic group.

(a) Show that there exists an irreducible polynomial g (x) ∈ Fp [x] such that L ∼= Fp [x]/(g (x)).

(b) Show that L is a Galois extension of Fp .

(c) Show that, up to isomorphism, there exists a unique finite field of cardinality pn . This finite field is denoted by Fpn .

(d) Show that the map ϕ : Fpn −→ Fpn defined by ϕ(y) := y p is an automorphism of Fpn . This map is called the Frobenius
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automorphism.

(e) Show that Γ
(
Fpn : Fp

)∼= (Z/nZ,+).

(f) Deduce that there is exactly one subfield of Fpn for any divisor d of n.

(g) Let f ∈ Fp [x] be an irreducible polynomial. Show that f splits into linear factors in Fpdeg( f ) .

Proof. (c) We know that L× is a cyclic group of order pn − 1. Hence any α ∈ L× satisfies αpn−1 − 1 = 0 and hence is a root of
f (x) := xpn − x ∈ Fp [x]. In addition, 0 ∈ L is also a root of f . Hence f splits over L and L is exactly the set of all roots of
f . Hence L is the splitting field of f over Fp . By Theorem 3.13, all splitting fields of f over Fp is isomorphic. Hence the
finite field of cardinality pn is unique up to isomorphism.

(a) Since L is the splitting field of xpn − x over Fp [x], by Question 2 of Sheet 3, there exists an element α ∈ L such that
L ∼= Fp (α). Let g ∈ Fp [x] be the minimal polynomial of α. Then g is irreducible and L ∼= Fp (α) = Fp [x]/〈g (x)〉.

(b) L is the splitting extension of f over Fp , and we know that f is separable. By Theorem 3.18 L | Fp is a Galois extension.

(d) The proof that α 7→αp is an automorphism of Fpn is essentially the same as the proof in Question 6 of Sheet 1.

For α,β ∈ Fpn ,

(αβ)p =αpβp , (α+β)p =
p∑

k=0

p !

k !(p −k)!
αkβp−k =αp +βp

We have used the fact that
p !

k !(p −k)!
is divisible by p for 1 É k É p − 1. Therefore ϕ is a ring homomorphism. Since

1p = 1, kerϕ= {0}. ϕ is faithful. Since Fpn is finite, ϕ is bijective. We conclude that ϕ is an automorphism of Fpn .

(e) First we note that the Frobenius automorphism fixes elements in Fp , because Fp is the prime subfield of Fpn , and
ϕ(1) = 1 implies that ϕ(k) = k for all k ∈ Fp . Hence ϕ ∈ Gal

(
Fpn | Fp

)
.

Second, we claim that ϕ has order n in Gal
(
Fpn | Fp

)
. For α ∈ Fpn ,

ϕn(α) =αpn =α =⇒ ϕn = id

In addition, if ϕk = id for some k É n, then xpk −x has pn distinct roots in Fpn , which is impossible.

Finally, by the fundamental theorem |Gal
(
Fpn | Fp

)| = [Fpn : Fp ] = n. We deduce that ϕ generates Gal
(
Fpn | Fp

)
and

hence Gal
(
Fpn | Fp

)∼=Z/nZ.

(f) For any d with d | n, Z/nZ has a unique subgroup of order d . By the Galois correspondence, there is a unique subfield
M of Fpn such that [Fpn : M ] = d .

(g) Let n = deg f . Let α be a root of f in its splitting field. Then f is the minimal polynomial of α over Fp and Fpn ∼= Fp (α).

Using the Frobenius automorphism, we find that αp ,αp2
, ...,αpn−1

are also roots of f . Since deg f = n, we have in fact

f (x) =
n−1∏
i=0

(x −αp i
)

in Fpn . Hence f splits over Fpn ,

Question 3

Let p be an odd prime, K = Fp (t ), and f = x4 − t ∈ K [x].

(a) Find the splitting field E of f distinguishing the cases p ≡ 1 mod 4 and p ≡ 3 mod 4.

(Hint: if α is a root of f , find c ∈ E such that cα is a root of f )

(b) Write down a set of generators for Γ(E : K ) distinguishing the cases p ≡ 1 mod 4 and p ≡ 3 mod 4.

(c) In the case p ≡ 1 mod 4 write down the Galois correspondence for E : K and Γ(E : K ).
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Proof. (a) In the splitting field of f , we have

f (x) = (x − t 1/4)(x −ωt 1/4)(x −ω2t 1/4)(x −ω3t 1/4)

where ω is a primitive fourth root of unity.

When p ≡ 1 mod 4, F×p is a cyclic group whose order is divisible by 4. Hence K contains all fourth roots of unity. The
splitting field of f over K is K (t 1/4), which is degree 4 over K .

When p ≡ 3 mod 4, the order of F×p is divisible by 2 but not 4. Then the splitting field of x4 − 1 is K (ω), which is a
quadratic extension K . The splitting field of f over K is K (t 1/4,ω), which is degree 8 over K .

(b) When p ≡ 1 mod 4, E | K is a Kummer extension. By Lemma 5.6 there exists a group monomorphism Gal(E | K ) →
µ4(K ). Since |Gal(E | K )| = 4, we deduce that Gal(E | K ) ∼=µ4(K ) ∼=Z/4Z. Gal(E | K ) is generated by the K -automorphism
given by γ : t 1/4 7→ t 1/2.

When p ≡ 1 mod 3, E | K (ω) is a Kummer extension. It is easy to observe that Gal(E | K ) is generated by γ and σ, where
γ maps t 1/4 to t 1/2 and fixes ω, and σ maps ω to ω3 and fixes t 1/4. We have Gal(E | K ) ∼=Z/4Z×Z/2Z.

(c) Gal(E | K ) ∼= µ4(K ) ∼=Z/4Z has a unique non-trivial proper subgroup, and hence E | K has a unique intermediate field.
The Galois correspondence is given by

K ⊆ K (t 1/2) ⊆ K (t 1/4)

〈γ〉 ⊇ 〈γ2〉 ⊇ {id}

Question 4

Let L/K be a finite separable extension of field. Define a Galois Closure M of L/K as a minimal degree extension of L for which
M/K is Galois. Show that the Galois Closure of L/K exists and is unique up to isomorphism. Show that the set of K invariant
embeddings homK (L, M) of L in M is in natural bijection with the set of right cosets of Γ(M : L) in Γ(M : K ).

Proof. By primitive element theorem, L | K is a simple extension. There exists α ∈ L such that L = K (α). Let f ∈ K [x] be the minimal
polynomial of α. By definition f is separable. Let M be the splitting field of f over K . By Theorem 3.18 M | K is a Galois
extension. We claim that M is a the Galois closure of L | K .

Since M is the splitting field of the minimal polynomial ofα, thenα ∈ M . Hence L = K (α) ⊆ M . Suppose that F is an extension
of L such that F | K is a Galois extension. By Theorem 3.18, F | K is a normal extension. α ∈ L ⊆ F implies that f splits over F .
Hence F contains a splitting field of f over K . As all splitting fields of f are K -isomorphic, we deduce that M is an extension
of L of minimal degree such that M | K is a Galois extension. Finally, since all Galois closures of L | K are splitting fields of f ,
they are K -isomorphic.

The notation HomK (L, M) seems ambiguous, since it normally refers to the set of all K -linear maps from L to M.

First we fix an embedding ι : L ,→ M . For γ ∈ Gal(M | K ), we define Φ(γ) := γ◦ ι ∈ HomK (L, M). We claim that Φ is a bijective
from the set of right cosets of Gal(M | L) in Gal(M | K ) to HomK (L, M).

• For γ,β ∈ Gal(M | K ),

γ◦ ι=β◦ ι ⇐⇒ γ◦ ι(α) =β◦ ι(α)

⇐⇒ β−1 ◦γ◦ ι(α) = ι(α)

⇐⇒ β−1 ◦γ fixes ι(L)

⇐⇒ β−1 ◦γ ∈ Gal(M | L)

⇐⇒ Gal(M | L)β= Gal(M | L)γ

Hence Φ is well-defined and injective.

• For σ ∈ HomK (L, M), the assignment ι(α) 7→σ(α) extends to a K -isomorphism γ ∈ Gal(M | K ) with γ◦ ι(α) =σ(α). Since
L = K (α), then σ= γ◦ ι=Φ(γ). Hence Φ is surjective.
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Question 5

Let ` be a positive integer, p be a prime number, and f` = x2` +1 ∈ Fp [x]. If N > 1 is an integer, we denote by U (Z/NZ) the set
of invertible elements of the ring Z/NZ. Recall that (U (Z/NZ), ·) is a multiplicative group.

(a) Show that any polynomial of degree 2 in Fp [x] splits in Fp2 [x].

(b) Show that for p = 3 the polynomial f1 is irreducible in F3[x] and give a construction of the field F32 .

(c) Show that the splitting field of f` is isomorphic to the splitting field of x2`+1 −1 ∈ Fp [x].

(d) Prove that for p = 5 the polynomial f2 ∈ F5[x] is reducible.

(e) Show that there exists an integer ` such that for any prime number p, the polynomial f` is reducible in Fp [x].

(Hint: show first that (U (Z/2nZ) , ·) is not a cyclic group if n Ê 3).

Proof. (a) Let f ∈ Fp [x] with deg f = 2. If f is irreducible, then f splits over Fp2 by Question 2.(g). If f is reducible, then f already
splits over Fp . Since Fp ⊆ Fp2 , f also splits over Fp2 .

(b) f1(x) = x2 +1 ∈ F3[x]. Since f1(0) = 1, f1(1) = 2, f1(2) = 2, then f1 has no roots in F3. Hence f1 is irreducible in F3[x]. The
splitting field of f1 over F3 is F3[x]/〈x2 +1〉 ∼= F32 , also as a result of Question 2.(g).

(c) Note that

x2`+1 −1 = (x −1)
∏̀
i=0

(
x2i +1

)
= (x −1)

∏̀
i=0

fi (x)

For simplicity consider the algebraic closure Fp of Fp . The set of roots of fi in Fp is exactly

Gi :=
{

u ∈ Fp : u2i =−1
}

Observe that Gi ⊆Gi+1 for each i ∈N. We find that f` and x2`+1 −1 has the same set of roots in Fp . Hence their splitting
fields are isomorphic.

(d) In F5[x], we have
f2(x) = x4 +1 = (x2 +2)(x2 +3)

Hence f2 ∈ F5[x] is reducible.

(e) In Question 3.(b) of Sheet 3 we have proven that 24 | p2−1 for all primes p > 3. Hence 8 | p2−1 for all odd primes. Since
F×

p2
∼=Z/(p2−1)Z, then Fp2 contains all eighth roots of unity. Hence x8−1 splits in Fp2 [x]. By part (c), f2(x) = x4+1 also

splits in Fp2 [x]. Suppose that f2 is irreducible in Fp [x]. Then for any root α of f2 we have [Fp (α) : Fp ] = deg f2 = 4. But
[Fp2 : Fp ] = 2, which is a contradiction. Therefore f2 is reducible in Fp [x] for all odd primes p. Finally, f2(x) = (x2 −1)2 ∈
F2[x]. Hence f2 is reducible in F2[x]. We deduce that f2 is reducible in every Fp [x].


