Peize Liu St. Peter's College University of Oxford

Problem Sheet 4 B3.1: Galois Theory

A Great work! Well explained.

Just a few silly mistakes

1 think.

In these problems K denotes an arbitrary field and K[x] denotes the ring of polynomials in one variable x over K. If p is a prime number, then \mathbb{F}_p denotes the field of integers modulo p.

Question 1

Find the Galois groups of the following polynomials over $\mathbb Q$:

- (a) $x^5 2x^3 x^2 + 2$;
- (b) $x^5 2$;
- (c) $x^5 4x + 2$.

Proof. (a) Note that $f(x) := x^5 - 2x^3 - x^2 + 2$ has the factorisation over \mathbb{Q} :

$$x^5 - 2x^3 - x^2 + 2 = (x - 1)(x^2 - 2)(x^2 + x + 1)$$

Hence the roots of f in $\mathbb C$ are $1, \sqrt{2}, -\sqrt{2}, \omega, \omega^2$, where ω is a primitive third root of unity. Hence the splitting field of f over $\mathbb Q$ is $\mathbb Q(\sqrt{2},\omega)$.

It is clear that $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$ and that $[\mathbb{Q}(\sqrt{2},\omega):\mathbb{Q}(\sqrt{2})]=2$. The latter is because $\omega \notin \mathbb{R} \supseteq \mathbb{Q}(\sqrt{2})$ and ω has minimal polynomial with degree 2 over \mathbb{Q} . Hence by tower law $[\mathbb{Q}(\omega,\sqrt{2}):\mathbb{Q}]=4$. Since \mathbb{Q} is separable, this is a Galois extension. $|\operatorname{Gal}(f)|=4$. Consider $\sigma \in \operatorname{Gal}(f)$ that swaps ω with ω^2 and fixes all other roots, and $\tau \in \operatorname{Gal}(f)$ that swaps $\sqrt{2}$ with $-\sqrt{2}$ fixes all other roots. σ and τ are of order 2 in $\operatorname{Gal}(f)$. Hence $\operatorname{Gal}(f) \cong V_4 = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

(b) The set of roots of $x^5 - 2$ in $\mathbb C$ are $\{2^{1/5}\zeta : \zeta^5 = 1\}$. Fix $\zeta \in \mathbb C$ to be a primitve fifth root of unity. Observe that $[\mathbb Q(\zeta) : \mathbb Q] = 4$ because the minimal polynomial of ζ over $\mathbb Q$ is $\Phi_5(x) = x^4 + x^3 + x^2 + x + 1$.

Next, f splits over $\mathbb{Q}(2^{1/5},\zeta)$, which is a Kummer extension over $\mathbb{Q}(\zeta)$. Therefore we have a (non-trivial) monomorphism $\operatorname{Gal}\left(\mathbb{Q}(2^{1/5},\zeta)\mid\mathbb{Q}(\zeta)\right)\to\mu_5(\mathbb{Q}(\zeta))\cong\mathbb{Z}/5\mathbb{Z}$. Since $\mathbb{Z}/5\mathbb{Z}$ is simple, we have $\operatorname{Gal}\left(\mathbb{Q}(2^{1/5},\zeta)\right)\cong\mathbb{Z}/5\mathbb{Z}$.

By Galois correspondence and tower law, we have

$$\left|\operatorname{Gal}\left(\mathbb{Q}(2^{1/5},\zeta)\mid\mathbb{Q}\right)\right| = \left[\mathbb{Q}(2^{1/5},\zeta):\mathbb{Q}\right] = \left[\mathbb{Q}(2^{1/5},\zeta):\mathbb{Q}(\zeta)\right]\left[\mathbb{Q}(\zeta):\mathbb{Q}\right] = 20$$

By the three Sylow theorems, $G := \text{Gal}\left(\mathbb{Q}(2^{1/5}, \zeta) \mid \mathbb{Q}\right)$ has a unique Sylow 5-subgroup $\text{Gal}\left(\mathbb{Q}(2^{1/5}, \zeta) \mid \mathbb{Q}(\zeta)\right)$, which is normal. This subgroup is generated by the \mathbb{Q} -automorphism $\gamma \in G$ such that $\gamma(2^{1/5}) = 2^{1/5}\zeta$ and $\gamma(\zeta) = \zeta$.

Consider another \mathbb{Q} -automorphism $\beta \in G$ such that $\beta(2^{1/5}) = 2^{1/5}$ and $\beta(\zeta) = \zeta^2$. It is clear that $G = \langle \gamma \rangle \langle \beta \rangle$ and $\langle \gamma \rangle \cap \langle \beta \rangle = \{id\}$. Therefore G is a semi-direct product: $G = \langle \gamma \rangle \ltimes_{\varphi} \langle \beta \rangle$ for some $\varphi : \langle \beta \rangle \to \operatorname{Aut}(\langle \gamma \rangle)$.

To determine φ , we simply note that $\gamma^2 \circ \beta(2^{1/5}) = \beta \circ \gamma(2^{1/5}) = 2^{1/5}\zeta^2$ and $\gamma^2 \circ \beta(\zeta) = \beta \circ \gamma(\zeta) = \zeta^2$. Hence $\gamma^2 = \beta \circ \gamma \circ \beta^{-1}$. Therefore $\varphi(\beta)$ is the inner automorphism of G that maps γ to γ^2 .

We conclude that $\operatorname{Gal}(f) = \langle \gamma \rangle \ltimes \langle \beta \rangle \cong \mathbb{Z}/5\mathbb{Z} \ltimes_{\varphi} \mathbb{Z}/4\mathbb{Z}$, where $\varphi : \mathbb{Z}/5\mathbb{Z} \mapsto \operatorname{Aut}(\mathbb{Z}/4\mathbb{Z})$ is given by $\varphi(\beta) : \gamma \mapsto \gamma^2$.

(c) We claim that $f(x) := x^5 - 4x + 2$ has exactly 3 real roots. Then by Proposition 6.5 we have $Gal(f) \cong S_5$.

Note that f(-2) = -22, f(0) = 2, f(1) = -1, f(2) = 26. By intermediate value theorem f has at least 3 real roots. The derivative of f is $f'(x) = 5x^4 - 4$. It has exactly two real roots $\pm (4/5)^{1/4}$. f can change its monotonicity 2 times, and hence has at most 3 real roots. This proves the claim.

Question 2

In this exercise you will complete the characterization of finite fields. Let L be a finite field. Recall that there exists a prime number p, and a positive integer n such that $|L| = p^n$. Recall that (L^*, \cdot) is a cyclic group.

- (a) Show that there exists an irreducible polynomial $g(x) \in \mathbb{F}_p[x]$ such that $L \cong \mathbb{F}_p[x]/(g(x))$.
- (b) Show that *L* is a Galois extension of \mathbb{F}_n .
- (c) Show that, up to isomorphism, there exists a unique finite field of cardinality p^n . This finite field is denoted by \mathbb{F}_{p^n} .
- (d) Show that the map $\varphi : \mathbb{F}_{p^n} \longrightarrow \mathbb{F}_{p^n}$ defined by $\varphi(y) := y^p$ is an automorphism of \mathbb{F}_{p^n} . This map is called the Frobenius

automorphism.

- (e) Show that $\Gamma(\mathbb{F}_{p^n}:\mathbb{F}_p) \cong (\mathbb{Z}/n\mathbb{Z},+)$.
- (f) Deduce that there is exactly one subfield of \mathbb{F}_{p^n} for any divisor d of n.
- (g) Let $f \in \mathbb{F}_p[x]$ be an irreducible polynomial. Show that f splits into linear factors in $\mathbb{F}_{n^{\deg(f)}}$.
- (c) We know that L^{\times} is a cyclic group of order $p^n 1$. Hence any $\alpha \in L^{\times}$ satisfies $\alpha^{p^n 1} 1 = 0$ and hence is a root of Proof. $f(x) := x^{p^n} - x \in \mathbb{F}_p[x]$. In addition, $0 \in L$ is also a root of f. Hence f splits over L and L is exactly the set of all roots of f. Hence L is the splitting field of f over \mathbb{F}_p . By Theorem 3.13, all splitting fields of f over \mathbb{F}_p is isomorphic. Hence the finite field of cardinality p^n is unique up to isomorphism.
 - (a) Since L is the splitting field of $x^{p^n} x$ over $\mathbb{F}_p[x]$, by Question 2 of Sheet 3, there exists an element $\alpha \in L$ such that $L \cong \mathbb{F}_p(\alpha)$. Let $g \in \mathbb{F}_p[x]$ be the minimal polynomial of α . Then g is irreducible and $L \cong \mathbb{F}_p(\alpha) = \mathbb{F}_p[x]/\langle g(x) \rangle$.
 - (b) *L* is the splitting extension of *f* over \mathbb{F}_p , and we know that *f* is separable. By Theorem 3.18 $L \mid \mathbb{F}_p$ is a Galois extension. $\sqrt{}$
 - (d) The proof that $\alpha \mapsto \alpha^p$ is an automorphism of \mathbb{F}_{p^n} is essentially the same as the proof in Question 6 of Sheet 1. For $\alpha, \beta \in \mathbb{F}_{p^n}$,

$$(\alpha\beta)^p = \alpha^p \beta^p, \qquad (\alpha + \beta)^p = \sum_{k=0}^p \frac{p!}{k!(p-k)!} \alpha^k \beta^{p-k} = \alpha^p + \beta^p$$

We have used the fact that $\frac{p!}{k!(p-k)!}$ is divisible by p for $1 \le k \le p-1$. Therefore φ is a ring homomorphism. Since and p = 1, p =

(e) First we note that the Frobenius automorphism fixes elements in \mathbb{F}_p , because \mathbb{F}_p is the prime subfield of \mathbb{F}_{p^n} , and $\varphi(1) = 1$ implies that $\varphi(k) = k$ for all $k \in \mathbb{F}_p$. Hence $\varphi \in \text{Gal}(\mathbb{F}_{p^n} \mid \mathbb{F}_p)$.

Second, we claim that φ has order n in Gal $(\mathbb{F}_{p^n} | \mathbb{F}_p)$. For $\alpha \in \mathbb{F}_{p^n}$,

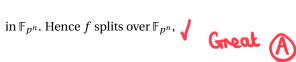
$$\varphi^n(\alpha) = \alpha^{p^n} = \alpha \implies \varphi^n = \mathrm{id}$$

In addition, if $\varphi^k = \text{id for some } k \leq n$, then $x^{p^k} - x$ has p^n distinct roots in \mathbb{F}_{p^n} , which is impossible.

Finally, by the fundamental theorem $|\operatorname{Gal}(\mathbb{F}_{p^n}|\mathbb{F}_p)| = [\mathbb{F}_{p^n}:\mathbb{F}_p] = n$. We deduce that φ generates $\operatorname{Gal}(\mathbb{F}_{p^n}|\mathbb{F}_p)$ and hence $\operatorname{Gal}\left(\mathbb{F}_{p^n} \mid \mathbb{F}_p\right) \cong \mathbb{Z}/n\mathbb{Z}$.

- (f) For any d with $d \mid n$, $\mathbb{Z}/n\mathbb{Z}$ has a unique subgroup of order d. By the Galois correspondence, there is a unique subfield M of \mathbb{F}_{p^n} such that $[\mathbb{F}_{p^n}:M]=d$.
- (g) Let $n = \deg f$. Let α be a root of f in its splitting field. Then f is the minimal polynomial of α over \mathbb{F}_p and $\mathbb{F}_{p^n} \cong \mathbb{F}_p(\alpha)$. Using the Frobenius automorphism, we find that α^p , α^{p^2} , ..., $\alpha^{p^{n-1}}$ are also roots of f. Since $\deg f = n$, we have in fact

$$f(x) = \prod_{i=0}^{n-1} (x - \alpha^{p^i})$$



Question 3

Let *p* be an odd prime, $K = \mathbb{F}_p(t)$, and $f = x^4 - t \in K[x]$.

(a) Find the splitting field *E* of *f* distinguishing the cases $p \equiv 1 \mod 4$ and $p \equiv 3 \mod 4$.

(Hint: if α is a root of f, find $c \in E$ such that $c\alpha$ is a root of f)

- (b) Write down a set of generators for $\Gamma(E:K)$ distinguishing the cases $p \equiv 1 \mod 4$ and $p \equiv 3 \mod 4$.
- (c) In the case $p \equiv 1 \mod 4$ write down the Galois correspondence for E: K and $\Gamma(E: K)$.

Proof. (a) In the splitting field of f, we have

$$f(x) = (x - t^{1/4})(x - \omega t^{1/4})(x - \omega^2 t^{1/4})(x - \omega^3 t^{1/4})$$

where ω is a primitive fourth root of unity.

When $p \equiv 1 \mod 4$, \mathbb{F}_p^{\times} is a cyclic group whose order is divisible by 4. Hence K contains all fourth roots of unity. The splitting field of f over K is $K(t^{1/4})$, which is degree 4 over K.

When $p \equiv 3 \mod 4$, the order of \mathbb{F}_p^{\times} is divisible by 2 but not 4. Then the splitting field of $x^4 - 1$ is $K(\omega)$, which is a quadratic extension K. The splitting field of f over K is $K(t^{1/4}, \omega)$, which is degree 8 over K.

(b) When $p \equiv 1 \mod 4$, $E \mid K$ is a Kummer extension. By Lemma 5.6 there exists a group monomorphism $Gal(E \mid K) \rightarrow \mu_4(K)$. Since $|Gal(E \mid K)| = 4$, we deduce that $Gal(E \mid K) \cong \mu_4(K) \cong \mathbb{Z}/4\mathbb{Z}$. $Gal(E \mid K)$ is generated by the K-automorphism given by $\gamma : t^{1/4} \mapsto t^{1/2}$. ?

When $p \equiv 1 \mod 3$, $E \mid K(\omega)$ is a Kummer extension. It is easy to observe that $Gal(E \mid K)$ is generated by γ and σ , where γ maps $t^{1/4}$ to $t^{1/2}$ and fixes ω , and σ maps ω to ω^3 and fixes $t^{1/4}$. We have $Gal(E \mid K) \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

same mistage here should be Dg, which is non-obelian, as of \sharp (c) Gal $(E \mid K) \cong \mu_4(K) \cong \mathbb{Z}/4\mathbb{Z}$ has a unique non-trivial proper subgroup, and hence $E \mid K$ has a unique intermediate field. The Galois correspondence is given by

Question 4

Let L/K be a finite separable extension of field. Define a *Galois Closure M* of L/K as a minimal degree extension of L/K or which M/K is Galois. Show that the Galois Closure of L/K exists and is unique up to isomorphism. Show that the set of K invariant embeddings L/K exists and is unique up to isomorphism. Show that the set of K invariant embeddings L/K in K in K is in natural bijection with the set of right cosets of L/K in K in K.

Proof. By primitive element theorem, $L \mid K$ is a simple extension. There exists $\alpha \in L$ such that $L = K(\alpha)$. Let $f \in K[x]$ be the minimal polynomial of α . By definition f is separable. Let M be the splitting field of f over K. By Theorem 3.18 $M \mid K$ is a Galois extension. We claim that M is a the Galois closure of $L \mid K$.

Since M is the splitting field of the minimal polynomial of α , then $\alpha \in M$. Hence $L = K(\alpha) \subseteq M$. Suppose that F is an extension of L such that $F \mid K$ is a Galois extension. By Theorem 3.18, $F \mid K$ is a normal extension. $\alpha \in L \subseteq F$ implies that f splits over F. Hence F contains a splitting field of f over K. As all splitting fields of f are K-isomorphic, we deduce that M is an extension of L of minimal degree such that $M \mid K$ is a Galois extension. Finally, since all Galois closures of $L \mid K$ are splitting fields of f, they are K-isomorphic.

The notation $\operatorname{Hom}_K(L,M)$ seems ambiguous, since it normally refers to the set of all K-linear maps from L to M.

First we fix an embedding $\iota: L \hookrightarrow M$. For $\gamma \in \operatorname{Gal}(M \mid K)$, we define $\Phi(\gamma) := \gamma \circ \iota \in \operatorname{Hom}_K(L, M)$. We claim that Φ is a bijective from the set of right cosets of $\operatorname{Gal}(M \mid L)$ in $\operatorname{Gal}(M \mid K)$ to $\operatorname{Hom}_K(L, M)$.

• For $\gamma, \beta \in Gal(M \mid K)$,

$$\gamma \circ \iota = \beta \circ \iota \iff \gamma \circ \iota(\alpha) = \beta \circ \iota(\alpha)$$

$$\iff \beta^{-1} \circ \gamma \circ \iota(\alpha) = \iota(\alpha)$$

$$\iff \beta^{-1} \circ \gamma \text{ fixes } \iota(L)$$

$$\iff \beta^{-1} \circ \gamma \in \text{Gal } (M \mid L)$$

$$\iff \text{Gal } (M \mid L)\beta = \text{Gal } (M \mid L)\gamma$$

Hence Φ is well-defined and injective.

• For $\sigma \in \operatorname{Hom}_K(L, M)$, the assignment $\iota(\alpha) \mapsto \sigma(\alpha)$ extends to a K-isomorphism $\gamma \in \operatorname{Gal}(M \mid K)$ with $\gamma \circ \iota(\alpha) = \sigma(\alpha)$. Since $L = K(\alpha)$, then $\sigma = \gamma \circ \iota = \Phi(\gamma)$. Hence Φ is surjective.

Question 5

Let ℓ be a positive integer, p be a prime number, and $f_{\ell} = x^{2^{\ell}} + 1 \in \mathbb{F}_p[x]$. If N > 1 is an integer, we denote by $U(\mathbb{Z}/N\mathbb{Z})$ the set of invertible elements of the ring $\mathbb{Z}/N\mathbb{Z}$. Recall that $(U(\mathbb{Z}/N\mathbb{Z}),\cdot)$ is a multiplicative group.

- (a) Show that any polynomial of degree 2 in $\mathbb{F}_p[x]$ splits in $\mathbb{F}_{n^2}[x]$.
- (b) Show that for p = 3 the polynomial f_1 is irreducible in $\mathbb{F}_3[x]$ and give a construction of the field \mathbb{F}_{3^2} .
- (c) Show that the splitting field of f_{ℓ} is isomorphic to the splitting field of $x^{2^{\ell+1}} 1 \in \mathbb{F}_n[x]$.
- (d) Prove that for p = 5 the polynomial $f_2 \in \mathbb{F}_5[x]$ is reducible.
- (e) Show that there exists an integer ℓ such that for any prime number p, the polynomial f_{ℓ} is reducible in $\mathbb{F}_{p}[x]$.

(Hint: show first that $(U(\mathbb{Z}/2^n\mathbb{Z}),\cdot)$ is not a cyclic group if $n \ge 3$).

- (a) Let $f \in \mathbb{F}_p[x]$ with deg f = 2. If f is irreducible, then f splits over \mathbb{F}_{p^2} by Question 2.(g). If f is reducible, then f already Proof. splits over \mathbb{F}_p . Since $\mathbb{F}_p \subseteq \mathbb{F}_{p^2}$, f also splits over \mathbb{F}_{p^2} .
 - (b) $f_1(x) = x^2 + 1 \in \mathbb{F}_3[x]$. Since $f_1(0) = 1$, $f_1(1) = 2$, $f_1(2) = 2$, then f_1 has no roots in \mathbb{F}_3 . Hence f_1 is irreducible in $\mathbb{F}_3[x]$. The splitting field of f_1 over \mathbb{F}_3 is $\mathbb{F}_3[x]/\langle x^2+1\rangle \cong \mathbb{F}_{3^2}$, also as a result of Question 2.(g).
 - (c) Note that

$$x^{2^{\ell+1}} - 1 = (x-1) \prod_{i=0}^{\ell} (x^{2^i} + 1) = (x-1) \prod_{i=0}^{\ell} f_i(x)$$

For simplicity consider the algebraic closure $\overline{\mathbb{F}_p}$ of \mathbb{F}_p . The set of roots of f_i in $\overline{\mathbb{F}_p}$ is exactly

If
$$u^2 = -1$$

$$G_i := \left\{ u \in \overline{\mathbb{F}_p} : u^{2^i} = -1 \right\}$$

Observe that $G_i \subseteq G_{i+1}^{\times}$ for each $i \in \mathbb{N}$. We find that f_{ℓ} and $x^{2^{\ell+1}} - 1$ has the same set of roots in $\overline{\mathbb{F}_p}$. Hence their splitting fields are isomorphic. We have $G_i = G_{in}^{2} \setminus x^2 : x \in G_{in}^{2}$ \Rightarrow all roots of $x^{2^{\ell+1}} - 1$ in splitting field of $G_i = G_{in}^{2} \setminus x^2 : x \in G_{in}^{2}$ \Rightarrow all roots of $x^{2^{\ell+1}} - 1$ in splitting

(d) In $\mathbb{F}_5[x]$, we have

$$f_2(x) = x^4 + 1 = (x^2 + 2)(x^2 + 3)$$

Hence $f_2 \in \mathbb{F}_5[x]$ is reducible. \checkmark

(e) In Question 3.(b) of Sheet 3 we have proven that $24 \mid p^2 - 1$ for all primes p > 3. Hence $8 \mid p^2 - 1$ for all odd primes. Since $\mathbb{F}_{n^2}^{\times} \cong \mathbb{Z}/(p^2-1)\mathbb{Z}$, then \mathbb{F}_{p^2} contains all eighth roots of unity. Hence x^8-1 splits in $\mathbb{F}_{p^2}[x]$. By part (c), $f_2(x)=x^4+1$ also splits in $\mathbb{F}_{p^2}[x]$. Suppose that f_2 is irreducible in $\mathbb{F}_p[x]$. Then for any root α of f_2 we have $[\mathbb{F}_p(\alpha):\mathbb{F}_p] = \deg f_2 = 4$. But $[\mathbb{F}_{p^2}:\mathbb{F}_p]=2$, which is a contradiction. Therefore f_2 is reducible in $\mathbb{F}_p[x]$ for all odd primes p. Finally, $f_2(x)=(x^2-1)^2\in$ $\mathbb{F}_2[x]$. Hence f_2 is reducible in $\mathbb{F}_2[x]$. We deduce that f_2 is reducible in every $\mathbb{F}_p[x]$.