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Question 1

i)
i)

iii)

iv)

vi)

vii)

viii)

Proof.

Suppose that F,G C H are subsheaves. Show that F'=G < F, =G, forallz € X

Let ¢: FF — G be a morphism in Ab(X). Show that kery : U —— ker (¢r7) is a sheaf (whereas for
coker ¢ and im ¢ we must sheafify).

Also show that (ker ), = ker (¢;) and (im ), = im (p,).
Show that ¢ injective <= ¢, injective for all z, and ¢ surjective <= (¢, surjective for all z.
Deduce that FF — G — H in Ab(X) is exact <— F, — G, — H, exact for all x.

Let ¢: F — G be a morphism in Ab(X) with ¢, surjective for all z. Show that Vs € G(U) and = € U,
there is open V' C U with z € V and t € F(V) with o(t) = sy,

“Surjectivity means local liftability.”

Show that ¢: F' — G is surjective <= for all s € G(U), there exists an open cover U = [JU; and
t; € F(U;) such that F(t;) = |y,

Let X =C\ {i:ne€Z;}, Ox(U) := {holomorphic functions U — C}, and O% (U) := {nowhere zero
holomorphic functions U — C}

Show that exp : Ox — O% is surjective (for f € Ox(U),exp(f) € O%(U) is the complex exponential)
but expy : Ox(U) — O% (U) not surjective no matter how small the open U > 0 is.

Let (X,0Ox) be a ringed space. Let ¢ : F — G be a homomorphism of Ox-modules, where G is of
finite type. Show that ¢, is surjective for some x € X = ¢y : F|; — G|, surjective for some open
U>z.

| In notes 6.3 we used this: we had Og%: > F,, and assuming F' of finite type we claimed that O(e?" — F|y
surjective on some open U > z. |

Let ¢ : F — G be a homomorphism of Ox-modules, where F' is of finite type and G is coherent.
Show that ¢, is injective for some x € X = ¢y : F|; = G| injective for some open U > z.

| Hint. First check that ker ¢ is of finite type (doesn’t use injectivity of ¢, ) by considering ker(OX@n —»
®
Fly = Gly)- |

i) “ =7 is trivial. For “ <= ", suppose that F, = G, for all z € X. Let U C X be open. Let s € F(U).
Then s, € F, = G, for all x € U. We can pick representative t' € G(U,) of s, where x € U, C U.
Then by the local-to-global condition there exists ¢ € G(U) such that t, = s, for all x € U. Hence
t =s € G(U). This implies that F(U) C G(U). Symmetrically G(U) C F(U). Hence F(U) = G(U).
Since U is arbitrary, F' = G as sheaves.

ii) First we check that ker ¢ : U +— ker(pr) is a presheaf. To check the functoriality, it suffices to check
that it is compatible with restriction. Let U C V. Then

(ker 9)(V)|y = (ker pv) |y = ker(ov |y) = ker o = (ker ) (U)

Next we check the local-to-global condition. Let {U;};er be a family of open sets. For each ¢ there is
s; € (ker p)(U;) C F(U;) such that

silu,nu, = Silu,nu, € (kerg)(UiNU;) € F(Us N Uj)

that ou(s)ly, = ¢u,(sly,) = 0 € G(U;). Since G is a sheaf, again by the local-to-global condition

Ui. Since F' is a sheaf, there exists a unique s € F'(U) such that s; = s|;;.. Note



iii)

iv)

v)

vi)

wu(s) =0€ G(U). Hence s € ker oy = (ker ¢)(U). We conclude that ker ¢ is a sheaf.

Note that
te liﬂ(ker@)(U) < JU sz dse (kerp)(U) sz =t
Uszx
<= JUszx3se FU) (sz =tANpu(s) =0€e€ GU))
= t € keryp,
Therefore

ker ¢, = lim (ker ) (U) = (ker ¢),
Usz

If im ¢ is the sheafification of im¢ : U — im gy, then (imp), = imy, is just the definition of

sheafification.

In any Abelian category, a morphism is injective (resp. surjective) if and only if it is a monomorphism
(resp. epimorphism). We have

¢ is a monomorphism <= V¢ (potp =0 = ¢ =0)

Vi VU € Top(X) (py oty =0 = ¢y = 0)
VU € Top(X) keropy =0

kero =0

Vee X (kerg), =kerp, =0

Vo e X ¢, is injective

Vo (Yop=0 = ¢=0)

Vi Vo eX (Yzo0p: =0 = thp =0)

Vo e X ¢, is surjective

 is an epimorphism

[ I A

Let F' — G — H be a sequence in Ab(X

~—

g

F—%3G "3 Hisexact at G < ker =ima
< Vax e X (kerf), =ker 5y =ima, = (ima),

Ba

(07

— Vre X F, —% G, H, is exact at G,

Since @, : F, — G, is surjective, there exists t, € F,, such that ¢, (t;) = s,. We choose a representative
t € F(W) for some open W C U. Then s, = ¢.(t:) = ¢w(t)z. Then ow(t)|,, = s|;, for some open
V' C W. By replacing t|;, with t we find a t € F'(V) such that oy (t) = s

By (iv), for each z € U we can find open U, C U with z € U, and t(*) € F(U,) such that F(t(®)) = 8|y, -
It is clear that {U,}.cy is an open cover of U.

We recall the following fact (corollary of Cauchy’s Theorem and Riemann Mapping Theorem) from
complex analysis:

Let U C C be a connected open set, and f : U — C be a nowhere vanishing holomorphic
function. Then U is simply-connected if and only if f(z) = exp(g(z)) for some holomorphic
function g : U — C.

To show that exp: Ox — OY is surjective, it suffices to show that exp,: Ox ., — (’);(,Z is surjective
for all z € X. For f, € O% ., we may pick a representative (f,U) for some open U :=V N X > 2
and nonwhere vanishing holomorphic f : V' — C. We can take V to be an open disc in C so that



vii)

viii)

f(2) = exp(g(z)) for some holomorphic g : V' — C. Then (g, U) represents an element g, in Oy ,, and
exp,(g2) = f=. So exp, is surjective.

For any open set V C C with 0 € V, expy : Ox(U) = O%(U) is not surjective, where U := V N X.
To see this, we note that there exists B(0,7) C V for some small r and hence 1/n € V for some
n € N. Then f(z) := (z — %)_1 € O%(U). It does not admit a holomorphic logarithm because U is

not simply connected.

Since G is of finite type, there exists a neighbourhood V' 3 z such that my : O%‘;” — G|y, is surjective.
At the stalk of x, we can construct f, : (’)??T; — F, as follows. We can pick generators e, ..., e, € O;’?Z,.
Let f.(e;) be a element in the preimage ¢, !(m.(e;)) (we used that ¢, is surjective). Since Og’g’fp is
a free module, this uniquely extends to a Ox j;-module homomorphism f; such that the following
diagram commutes:

@D
OXZc
fm/// \Lﬂ'x

Next we pick the representatives (e;, U;), (fz(€:), Vi), (mz(es), W;) for e, fo(ei), mz(ei). Let U :=V N
Nz, (Ui N V; N W;). Then the diagram lifts to a commutative diagram of Ox (U)-modules:

oY"(U)
fo .~ FU

F(U) “ou G(U)

It is clear that the diagram respects restrictions. So we have commutative diagram of Ox-modules:

Fly —— Gly

Since 7y is surjective, so is ¢y : F|; = G|y

The categorical kernel ker ¢ is always a morphism. To clearify, the source object of ker ¢ shall be
denoted by Ker ¢.

Let y € X. Since F is of finite type, there exists open W C X and a surjection 7y : O%" — F|y;,. Since
G is coherent, we know that Ker(¢yw omyy) is of finite type. Then, with possible restriction to a smaller
open set, we have a surjection oy : O%m — Ker(pw o my). By universal property of kernel, there
exists unique a morphism jy : Ker(pw o ) — Ker ¢p. The composite jy o ow : O%m — Ker pw
is surjective.

Ker(gow o Ww) — O%n

W w lﬂw

217
odm s Kerowy — Flyy —— G
L — 14 lw Iy

This shows that Ker ¢ is of finite type.Now we are given that ¢, is injective for some x € X. Then
(Kery), = 0. Since Kery is of fintie type, there exist an open V' C X and a surjection ay :
Oi‘;p — (Ker ¢)|;,. The morphism on the stalk «, : O%’x — (Ker ¢), sends the generators ay, ..., ap to
0 € (Ker¢),. We pick representatives (a;, U;) for each a; and let U := V N(!_, U;. Then oy lifts to a
surjective zero map ag : O(EJBP — (Ker ¢)y. Hence (Ker )y =0, and ¢y : F|; = G| is injective. O



Question 2

Motivation: Why is Nakayama’s Lemma useful in geometry? “Transferring information from pointwise to
infinitesimal to local”:

Recall Nakayama’s Lemma:

Let R be a ring, p € Spec R, and M be a finitely generated R-module. If ny,....,ng € M is a

basis for the r(p)-vector space My ®g, Kk(p), then ni,...,ng generate the Ry-module My for some
f € R\ p (indeed it is a minimal generating set).

(When R is a local ring with mazx ideal m, this becomes M/mM = (ny,...,ng) — M = (ny,...,ng))

i) Let (X,Ox) be a scheme and F' € QCoh(X) of finite type. Then we call F(z) = F; ®oy , x(z) the
fibre.

Given s1,...,8, € F(U) on open U > z, if (s1),,...,(sn), generate the fibre then possibly after
shrinking U, show that s1, ..., s, also generate F'|;;. Deduce that:

o if F'(x) =0 then F'|; = 0 some open U > z.

e 1z — dim F'(z) is upper-semi-continuous, i.e. {dim < d} C X is open (since integer-valued can also
take < d.)

ii) Algebra fact. Let 0 — My — My — M3 — 0 be a short exact sequence in R-Mod. Suppose that My is
flat. Then Ms flat < M;/IMy — My/IMs injective for all ideal I C R.

Proof.

Let F' € Ox-Mod be locally finitely presented (e.g. F' € Coh(X)). Prove that F' € Vect(X) <= F'is
a flat Ox-module.

| Hint. Rewrite the algebra fact in case R local ring, you will use the case that I is the mazximal ideal.
The key is to reach an ezact sequence of type 0 — N, /m; N, — K (2)®" — F,/m,F, — 0 and use (i). |

i)

ii)

WLOG reduce to the affine case: X = Spec R. F = M for some R-module M. z = p is a prime ideal
in R. Fy = My. Ox, = Ry. k(v) = Ry/pRy. The fibre F(z) = M, ®g, k(p). By Nakayama Lemma
above, (51)z, ..., (Sn)z generates F'(x) implies that s1, ..., s, generate My for some f € R\ p. Note that
M|Df = M’; so we take U = Dy.

o If F(x) =0, then (0), generates F'(x). By the previous part 0 generates F|;;. So F|; = 0.

o If dim F(z) = d at z, then we can find (s1)z,..., (S4)z that generate F'(x). So si,..., sq generates
F|; for some U > x. Then dim F(y) < d for y € U, since (s1)y, ..., (54)y generate F(y). This
shows that {dim < d} is open.

If F'is a vector bundle, then locally F|; is free and hence is flat. Since flatness is a local property, F
is flat.

Conversely, suppose that F' is flat. Since F' is lovally finitely presented, locally we have
O™ — OF™ = F|; =0

Consider the exact sequence
0— Kerp — OF" = F|; =0

Strategy: Shrink U to make N := Ker ¢ = 0. Suffices to show N(z) = 0.

Since F'is a flat Ox-module, the stalk F} is a flat Ox ,-module. First we localise the above exact
sequence:
0— N, = O, = F, =0



We use the algebra fact. Since Og’?;} and Fy are flat, N, /m, N, — O%ﬁr/meiz & k()%™ is injective.
Note that N,/m,N, = N, ®Ox o VOX’x/m;L.. We tensor Ox ,/m, to the short exact above. We have
that

0 — Ny /m,N, — k(2)®" = F,/m,F, — 0

is right exact. It is in fact exact because the first nonzero map is injective.

If n = dim F,;/myF, = dim F'(x), then the second nonzero map is an isomorphism and we are done.
If n > dim F(z), let (81)g, ..., (Sm)s generate F(z) (m < n). By (i) we have OF™ — F|; — 0. Then
we take N to be the kernel of the above map and follow the same argument.

Note: We need the fact: consider ker f — R¥™ — M — 0 and kerg — R¥™ — M — 0. If ker f is

finitely generated, then so is ker g.

Question 3

Motivation: Vect(Spec R) +— M for finitely generated projective R-module M

Let X = Spec R. M is an R-module. Consider the following conditions.

(0)

ii)

iii)

Proof.

M e Vect(X). i.e. locally free of finite rank. i.e. there is a cover X = |J Dy, with My, finitely generated
free Ry-module.

M is finitely presented and flat.

M is finitely presented and My, is a free Ry-module for all maximal ideals m (can also use all prime
ideals).

M is the direct summand of a finite rank free module.
M is finitely generated and projective.
Prove that (0) < (1).

| Hint. For <= wuse 2.(ii). For = compare the proof in Sec 3.1 of notes, use tricks from Sec 3.0,
and use fact that in the short exact sequence 0 — K — My — My — 0, M is finitely generated and Mo
is finitely presented implies that K is finitely generated. |

Prove that (0) & (1) <= (2), and (4) < (3) = (1).

Finally prove that (0) = (4).

| Hint. use Sec 3.0 of notes and the fact about localisation: for M finitely presented,
S~'Homp(M, N) = Homg-15(S~tM,S™IN). |

i) “(1) => (0)”: Suppose that M is finitely presented and flat. We need to prove that M is locally finitely
presented and flat as a Ox-module. Since flatness is a local property, we have

M is a flat R-module <= Vp € Spec R: M, is a flat R,-module (AEM Prop. 3.10)
— Vpe X: Mp is a flat Ox p-module

= M is a flat Ox-module

Since M is finitely presented, we have an exact sequence

R®™ — Ron M ——0

R®™ RO M are global sections of Oxy-modules OF", O?@”,M . So M is locally finitely presented.
Now by Question 2.(ii), we have M € Vect(X).



ii)

“(0) => (1) Suppose that M € Vect(X). There is a finite cover of X by basic open sets Dy, with
My, = (Ry,)®™ for some n;.

We can take the generators ey, ..., e, of My,. Let ej = gai(hj)/fflj, where h; € M and ¢; : M — Mj,
is the localisation map. Take A; := {hy,...,hy,}, and A = |J; A;. Therefore we have a R-module
homomorphism a: R4 — M. Since X = \U; Dy,, for any p € X, the induced morphism on the stalk
ap R?A — M, is surjective. Hence o is surjective. M is finitely generated. We have a short exact
sequence

0 —— K —— R®4 M > 0

Now we take the localisation to f; again. Since localisation is exact, we have the short exact sequence

0 Ky,

2

A \ \
R;-BZ /Mfl /0

By the hint, since My, is finitely presented and R%A is finitely generated, then K, is finitely generated.
Similar to the proof above, we have that K is finitely generated. Hence M is finitely presented.

In particular, M is locally finitely presented. We use Question 2.(ii) again to deduce that M is a flat
Ox-module. Hence M is a flat R-module.

“(0)(1) = (2)”: Since M is locally free of finite rank, it is free of finite rank at the stalk level. This
means that M, = M, is a free Ry-module for all p € X.

“(2) = (0)™: First we prove that M, is a free Ry-module for all p € X. For any p € X, let m be a
maximal ideal containing p. Suppose that My =2 RE!. Then M, = (M), = (RE), = RY'. Hence
M, is free.

Next, consider p € X and isomorphism « : RSBI — M,. Since M is fintiely presented, so is M,. In
particular we may take I to be a finite set. Since M is of finite type, by the (first) lemma in Section
6.2 of the notes, there exists an open U 3 p and a morphism of Opy-modules ¢ : (916?1 — M!U such that
¢p = . Using the same method in the prood of “(0) = (1)”, we can prove that Ker ¢(V') is finitely
generated for any open V' C U. Hence Ker ¢ is of finite type. By the second lemma in Section 6.2 of
the notes, we deduce that ¢ is an isomorphism. Hence (’)EBI ~ M |7- In other words, M e Vect(X).

“(3) = (4)”: Suppose that M is direct summand of a finite rank free module. That is, R®" = M @& N.
Let g : A — B be any epimorphism and f : M — B be any R-module homomorphism. Then we have
the commutative diagram:

A
h,/’)’/\x
R”&M%B
s

a:M®&N — M and B: M — M & N are the projection and inclusion maps. Since R" is free, it is
projective, and hence there exist a lift h of f o . Then h o (8 is a lift of f. Hence M is projective.

“(4) = (3)”: Suppose that M is finitely generated and projective. Then we have a short exact
sequence

0—— K —>R™ —— M 0

Since M is projective, the sequence splits. We have R®" = M @ K. Hence M is a direct summand of
a finite rank free module.

“(3)(4) => (1) Suppose that M is finitely generated and projective. Then Tor(A, M) = 0 for any
R-module A and n > 1. In particular, let 0 - A — B — C be a short exact sequence. We look at
the induced long exact sequence of Tor. Since Tor®(C, M) = 0, we have an exact sequence



0= Tor(C,M) —— A®r M —— BOrM —— CRr M —— 0

Hence — ®p M is exact. M is flat. Since M is finitely generated, the short exact sequence 0 — K —
R®" — M — 0 gives a finite presentation for M.

iii) “(0) = (4)”: In the proof of “(0) = (1)” we have shown that M is finitely generated. To prove that
M is exact, we need to prove that Hompg(M, —) is exact. Let 0 = A — B — C' — 0 be a short exact
sequence. Consider the sequence

0 —— Hompg(M,A) —— Homp (M, B) —— Homp(M,C) —— 0

Since M is finitely presented, by the hint, we look at the localisation at f;:

7 k3

gl gi gl

0 —— Homei(MfﬂAfz‘) E— Homei(Mfi’Bfi) E— Homei(Mwafi) — 0

0 —— HomR(M, A)fA E— HOHIR(M, B)f. E—— HOInR(M, C)f — 0

7

We know that My, is free as an Ry,-module. So Homp, (My,, —) is exact. The above sequence is exact.
Now as { Dy, } covers X, by the local algebra theorem, we deduce that the sequence before localisation
is exact. Hence M is projective. O

Question 4
i) Let X = Spec R. M is an R-module.
e Show that £ = M is a line bundle <= Vpe X 3feR\p: My = Ry.

e Show that £ = M is a line bundle <= M is a finitely generated projective R-module with
dim,, ) M @ k(p) =1 for all p € X.

Deduce that every line bundle on A} = Speck[t] is trivial.
| Hint. Structure theorem for finitely generated modules over PID. |
ii) Let F' € Vect(X). Describe the transition function of the dual FV := Homop, (F,Ox).

Deduce that for a line bundle £, the transition function of £V is the inverse of that of £ and
L R0y L' =r ®oyx Homp, (£,0x) = Ox

via the natural evaluation map.

iii) Let M, N be R-modules. Suppose that ¢ : M®@r N =, R. Pick m; € M, n; € N with ¢ (Z?Zl m; & nz) =

1. Check that M — M, m ~ 3. ¢ (m ® n;) m; is an isomorphism which factorises as M — R? — M
and deduce that M is a summand of R%.

iv) Show that £ € Ox-Mod is a line bundle <= there exists F' € QCoh(X) such that F ®o, £ = Ox
(definition of L being invertible sheaf). (In fact, enough to require F € Ox-Mod, but tricky)

| Hint. combine (iii) with 3.(3). |

Proof. i) e By definition (and using Section 7.6),

M is a line bundle <= Vp e X 3U € Top(X) (p € U A M|, = Op)
« VpeX3feR\p (M|, =Op,)
< VpeX3IfecR\p (My=Ry)



e Note that for p € X,
M ®p k(p) = M @r (Rp/pRy) = M @R Ry @R, (Ry/pRy) = My, Qr, (Ry/pRy) = M, /pM,
Therefore,
dimy, ) (M ®r k(p)) =1 <= My/pM, = k(p) = Ry/pR, as r(p)-modules

If M is a line bundle, then using My = Ry and taking direct limits, we have M, = R,. Hence
M, /pM, = k(p). Conversely, suppose that M is finitely generated and projective, then by Ques-
tion 3, M is a vector bundle over X. And we have M, = (R,)®" for some n € N. Then
M, /pM, = k(p)®". Theflvdimﬁ(p)(M ®pr k(p)) = 1 implies that n = 1. Hence M, = R, for all
p € X. This shows that M is a line bundle.

Suppose that £ is a line bundle on A}C. Then L € QCoh(A}g) and by Section 7.6 of the notes, we have
L = M for some k[t]-module M. By the above result, M is finitely generated and projective. Since
k[t] is a PID, and M is torsion-free (since it is projective), by the structure theorem M = (k[t])®" for
some n € N. Let p = (). Then s((t)) = k. We have dimy (M @4y k) = dimy k" = n. Since £ is a line
bundle, we deduce that n =1. So £ = OAi is a trivial line bundle.

ii) Without loss of generality we assume that X is connected. Let {Ui,...,U,} be an open cover of X.
For each U; we can pick a local trivialisation of £ as o; : £|Ui — Oa". If Ujj == U;NU; # @, the
transition function oy; : Og:; — O[EJBZ is the morphism such that the following diagram commutes:

L ’ Ui
s
52 v N S
o
Let 3;; be the corresponding transition function of £Y. We claim that 3;; = (041-;-1)T = ajTi as matrices

over Ox (Uij). (To be proven...)

Suppose that £ is a line bundle. Let ev: £ ®p, LY — Ox be the natural evaluation map. Let
{U1,...,Uy,} be an open cover of X such that £|Ui = Op,. It is trivial that the restriction evy, is an
isomorphism. Then ev is given by gluing evy,.

iii) Following the question, ¢ : M @ g N — R is an isomorphism and ¢(>, m; ®n;) = 1. Let ac: M — M
be the R-module homomorphism given by m +— > . ¢(m ® n;)m;. In fact, a is the composition of the
isomorphisms:

.d _1 .d
M— Mg R Moy (MarN) — (Mor N ogM —222% s RopM — s M

mi——=mel—— > m®(m;n;) — Y (Mmn) @m; —— >, e(m@n;) @m; — Y . o(m®n;)m;
Note that a : M — M factorises as
M R? » M

m —— (p(m @ n1), ..., p(m @ ng)) —— S p(m @ n;)m;

(P1y ey ) > Zgzl TiM;

The map R? — M extends to a short exact sequence 0 — K — R* — M — 0. Since R¢ — M admits
a section, the sequence splits. Hence M is a direct summand of R%.



iv)

Suppose that £ is a line bundle. By (ii) we have that £®0, LY = Ox, where £V € QCoh(X) because
it is also a line bundle.

Conversely, suppose that I’ is a Ox-module such that F ®p, £ = Ox. We have F' = M for some
R-module M. For p € X, we have a Ox y-module isomorphism ¢y : Ly, ®0y, FytoOxp. Let m; € L,
and n; € F, such that sop(Zle m; ®n;) =1 € Ox,p. We choose representatives (m;, U;), (ni, Vi) for
m;i,n;. Let U = ﬂle(Ui NV;). Then ¢, lifts to a Oy-module isomorphism ¢y : L|; ®o, F|; = Op.
By the same method in (iii), we can show that L[, is a direct summand of O[G?d. Hence L is a vector
bundle. In particular, £ is quasi-coherent and £ = M for some R-module M. Similarly, F' is also
quasi-coherent and F' = N for some R-module N. In particular we have M ®r N = R as R-modules.

Finally, to show that £ is a line bundle, by (i) it suffices to show that dim,,)(M ®g k(p)) = 1. Note
that
1 = dimy ) £(p) = dimyy) (R @ £(p)) = dimyy) (M @r N @ £(p))
= dimyy () (M ®r £(p)) ®p(p) (N g K(p)))
= dimn(p)(M ®R :‘i(p)) . dimn(p) (N QR H(p))

Hence dim,,,)(M ®g k(p)) = 1. This finishes the proof. O

Question 5

Fact. every line bundle on A} is trivial.

i) Calculate Pic(IP") = {isomorphism classes of line bundles on P"} with group operation — ®@,, —. In-
deed show it is = Z, generated by O(1).

ii) Compute I'(P", O(d)) for d € Z. (O(d) = O(1)®9)
iii) Let p be the point (z) € Speck[z] = Ap in Pt = Ag U A;. Show that O(—1) = ideal sheaf of {p}.

Let Z be the closed subscheme Spec(k[z]/z%) C Ag C Pi. Show that O(—d) = ideal sheaf of Z.

What is the ideal sheaf of d closed points {p1, ...,ps} C P'?

iv) Show that if two graded R-mods M, N over graded ring R satisfy M,, = N,, (in graded sense) for n > d,
then M = N. (See Sec 10 notes)

Proof.

i)

ii)

iii)

Let Uy, ...,Uy, be the affine open sets of P}!. From the fact we know that ¢; : L|; — Oy, is an
; i
isomorphism. The transition function «;; : OUU. — (’)Uz.j is a unit in the ring R;;.

We know that Pic P} = H1(P}, OHD}C ). (cuj) are identified if they differ by a factor from k.

m

Line bundle O(m) defined by (o;) = <7> . O(m) = 0(1)®™, where tensoring comes from multi-
z;

plying the transition functions.

PicP! = Z.
For d < 0, I'(P},0(d)) = 0; for d > 0, T'(IP}, O(d)) = k[0, ..., xp]q is the d-th grading.
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Question 6

i)

ii)

Proof.

Let C be an Abelian category. Show that if every object M € C has a injective morphism M — I
into an injective object, then every object M admits an injective resolution. (We say C has “enough
injectives’.)

Fact. Ab has enough injectives.

Let F' € Ab(X). Pick I, € Ab such that F,, — I, is an injective morphism and I, is an injective object

in Ab. Show that [ := H (pz)elz € Ab(X) (inclusion map ¢y : {x} — X of a point) is an injective

zeX
object admitting an injective morphism F' — I. (Hence Ab(X) has enough injectives.)

i) We construct an injective resolution for M inductively. Firstly, since C has enough injectives, we have

a monomorphism € : M — I° where I is some injective object. Now suppose that we have constructed

do DY dn

-1
M < € IO In—l In

Let coker d”~! : I — C™ be the cokernel of d"~!. Since C has enough injectives, we have a monomor-
phism ¢" : C™ — I"*1. Let d" := ¢™ o cokerd” ! : I"™ — I"™!. Then kerd® = ker coker d"~ ! =
imd"~!. Hence the sequence is exact at I™. By induction, we have constructed a sequence which is
exact at each injective object I™:

Moty A p d e d

This is an injective resolution for M.
ii) We use the following criterion for an object being injective:
I ia an injective object if and only if Hom(—, I) is an exact functor.

We define a morphism ¢ : F' — I by the following. For an open set U C X, let ¢y : F(U) —
I(U) = H(gpx)*lx, s H tz(Sz), where ¢, : F, — I, is the given monomorphism. Note that ¢

zeU zelU
is an monomorphism if and only if ¢r is injective for all open U C X. Let s,s’ € F(U) such that

vu(s) = pu(s’). By definition we have H Lx(Sz) = H tz(sh). Then ty(s; — i) =0 forall z € U.

zelU zelU
Since ¢, is injective, s, = s, for all x € U. Hence (Question 2 of Sheet 1) s = s’ € F(U). So ¢y is

injective. We deduce that ¢ : F' — I is an monomorphism.

Then we shall show that Hom(—, I) is exact. Let 0 - A — B — C' — 0 be a short exact sequence in

Ab(X). Take z € X. Then 0 - A; — B, — C, — 0 is exact by Question 1. Since I, is injective,
Homap(—, Iz) is exact. So we have a short exact sequence

0 —— HomAb(C’x,Ix) —_— HOHlAb(Bx,Ix) —_— HOHlAb(Am,Ia;) — 0

The functor ],y is exact by Question 4 of Sheet 3 of C2.2 Homological Algebra. So we have a short
exact sequence

0 —— [] Homan(Cy,I.) — ][ Homan(Bs, L) —— [] Homap(As, L) — 0
zeX zeX zeX

Finally, note that

Homap(x)(A, I) = Homap(x) <A7 H (%)*Iac)
zeX
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So we have an short exact sequence
0 —— HOHIAb(X)(C, I) —_— HomAb(X)(B,I) — HOHlAb(X)(A, I) — 0

We deduce that Homap(x)(—, I) is exact. So [ is an injective object. In conclusion, Ab(X) has enough
injectives. O



