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Question 1

i) Suppose that F,G ⊆ H are subsheaves. Show that F = G ⇐⇒ Fx = Gx for all x ∈ X

ii) Let ϕ : F → G be a morphism in Ab(X). Show that kerϕ : U 7−→ ker (ϕU ) is a sheaf (whereas for
cokerϕ and imϕ we must sheafify).

iii) Also show that (kerϕ)x = ker (ϕx) and (imϕ)x = im (ϕx).

Show that ϕ injective ⇐⇒ ϕx injective for all x, and ϕ surjective ⇐⇒ ϕx surjective for all x.

Deduce that F → G→ H in Ab(X) is exact ⇐⇒ Fx → Gx → Hx exact for all x.

iv) Let ϕ : F → G be a morphism in Ab(X) with ϕx surjective for all x. Show that ∀s ∈ G(U) and x ∈ U ,
there is open V ⊆ U with x ∈ V and t ∈ F (V ) with ϕ(t) = s|V .

v) “Surjectivity means local liftability.”

Show that ϕ : F → G is surjective ⇐⇒ for all s ∈ G(U), there exists an open cover U =
⋃
Ui and

ti ∈ F (Ui) such that F (ti) = s|Ui
.

vi) Let X = C \
{

1
n : n ∈ Z+

}
, OX(U) := {holomorphic functions U → C}, and O∗X(U) := {nowhere zero

holomorphic functions U → C}

Show that exp : OX → O∗X is surjective (for f ∈ OX(U), exp(f) ∈ O∗X(U) is the complex exponential)
but expU : OX(U)→ O∗X(U) not surjective no matter how small the open U 3 0 is.

vii) Let (X,OX) be a ringed space. Let ϕ : F → G be a homomorphism of OX -modules, where G is of
finite type. Show that ϕx is surjective for some x ∈ X =⇒ ϕU : F |U → G|U surjective for some open
U 3 x.

[ In notes 6.3 we used this: we had O⊕nX,x ∼= Fx, and assuming F of finite type we claimed that O⊕nU → F |U
surjective on some open U 3 x. ]

viii) Let ϕ : F → G be a homomorphism of OX -modules, where F is of finite type and G is coherent.
Show that ϕx is injective for some x ∈ X =⇒ ϕU : F |U → G|U injective for some open U 3 x.

[ Hint. First check that kerϕ is of finite type (doesn’t use injectivity of ϕx) by considering ker(OX |⊕nU �

F |U
ϕU→ G|U ). ]

Proof. i) “ =⇒ ” is trivial. For “ ⇐= ”, suppose that Fx = Gx for all x ∈ X. Let U ⊆ X be open. Let s ∈ F (U).
Then sx ∈ Fx = Gx for all x ∈ U . We can pick representative t′ ∈ G(Ux) of sx where x ∈ Ux ⊆ U .
Then by the local-to-global condition there exists t ∈ G(U) such that tx = sx for all x ∈ U . Hence
t = s ∈ G(U). This implies that F (U) ⊆ G(U). Symmetrically G(U) ⊆ F (U). Hence F (U) = G(U).
Since U is arbitrary, F = G as sheaves.

ii) First we check that kerϕ : U 7→ ker(ϕU ) is a presheaf. To check the functoriality, it suffices to check
that it is compatible with restriction. Let U ⊆ V . Then

(kerϕ)(V )|U = (kerϕV )|U = ker(ϕV |U ) = kerϕU = (kerϕ)(U)

Next we check the local-to-global condition. Let {Ui}i∈I be a family of open sets. For each i there is
si ∈ (kerϕ)(Ui) ⊆ F (Ui) such that

si|Ui∩Uj
= sj |Ui∩Uj

∈ (kerϕ)(Ui ∩ Uj) ⊆ F (Ui ∩ Uj)

Let U :=
⋃
i∈I Ui. Since F is a sheaf, there exists a unique s ∈ F (U) such that si = s|Ui

. Note
that ϕU (s)|Ui

= ϕUi(s|Ui
) = 0 ∈ G(Ui). Since G is a sheaf, again by the local-to-global condition
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ϕU (s) = 0 ∈ G(U). Hence s ∈ kerϕU = (kerϕ)(U). We conclude that kerϕ is a sheaf.

iii) Note that

t ∈ lim−→
U3x

(kerϕ)(U) ⇐⇒ ∃U 3 x ∃ s ∈ (kerϕ)(U) sx = t

⇐⇒ ∃U 3 x ∃ s ∈ F (U) (sx = t ∧ ϕU (s) = 0 ∈ G(U))

⇐⇒ t ∈ kerϕx

Therefore
kerϕx = lim−→

U3x
(kerϕ)(U) = (kerϕ)x

If imϕ is the sheafification of imϕ : U 7−→ imϕU , then (imϕ)x = imϕx is just the definition of
sheafification.

In any Abelian category, a morphism is injective (resp. surjective) if and only if it is a monomorphism
(resp. epimorphism). We have

ϕ is a monomorphism ⇐⇒ ∀ψ (ϕ ◦ ψ = 0 =⇒ ψ = 0)

⇐⇒ ∀ψ ∀U ∈ Top(X) (ϕU ◦ ψU = 0 =⇒ ψU = 0)

⇐⇒ ∀U ∈ Top(X) kerϕU = 0

⇐⇒ kerϕ = 0

⇐⇒ ∀x ∈ X (kerϕ)x = kerϕx = 0

⇐⇒ ∀x ∈ X ϕx is injective

ϕ is an epimorphism ⇐⇒ ∀ψ (ψ ◦ ϕ = 0 =⇒ ψ = 0)

⇐⇒ ∀ψ ∀x ∈ X (ψx ◦ ϕx = 0 =⇒ ψx = 0)

⇐⇒ ∀x ∈ X ϕx is surjective

Let F → G→ H be a sequence in Ab(X).

F G Hα β
is exact at G ⇐⇒ kerβ = imα

⇐⇒ ∀x ∈ X (kerβ)x = kerβx = imαx = (imα)x

⇐⇒ ∀x ∈ X Fx Gx Hx
αx βx is exact at Gx

iv) Since ϕx : Fx → Gx is surjective, there exists tx ∈ Fx such that ϕx(tx) = sx. We choose a representative
t ∈ F (W ) for some open W ⊆ U . Then sx = ϕx(tx) = ϕW (t)x. Then ϕW (t)|V = s|V for some open
V ⊆W . By replacing t|V with t we find a t ∈ F (V ) such that ϕV (t) = s|V .

v) By (iv), for each x ∈ U we can find open Ux ⊆ U with x ∈ Ux and t(x) ∈ F (Ux) such that F (t(x)) = s|Ux
.

It is clear that {Ux}x∈U is an open cover of U .

vi) We recall the following fact (corollary of Cauchy’s Theorem and Riemann Mapping Theorem) from
complex analysis:

Let U ⊆ C be a connected open set, and f : U → C be a nowhere vanishing holomorphic
function. Then U is simply-connected if and only if f(z) = exp(g(z)) for some holomorphic
function g : U → C.

To show that exp: OX → O∗X is surjective, it suffices to show that expz : OX,z → O∗X,z is surjective
for all z ∈ X. For fz ∈ O∗X,z, we may pick a representative (f, U) for some open U := V ∩ X 3 z
and nonwhere vanishing holomorphic f : V → C. We can take V to be an open disc in C so that
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f(z) = exp(g(z)) for some holomorphic g : V → C. Then (g, U) represents an element gz in OX,z, and
expz(gz) = fz. So expz is surjective.

For any open set V ⊆ C with 0 ∈ V , expU : OX(U) → O∗X(U) is not surjective, where U := V ∩X.
To see this, we note that there exists B(0, r) ⊆ V for some small r and hence 1/n ∈ V for some
n ∈ N. Then f(z) :=

(
z − 1

n

)−1 ∈ O∗X(U). It does not admit a holomorphic logarithm because U is
not simply connected.

vii) Since G is of finite type, there exists a neighbourhood V 3 x such that πV : O⊕nV → G|V is surjective.
At the stalk of x, we can construct fx : O⊕nX,x → Fx as follows. We can pick generators e1, ..., en ∈ O⊕nX,x.
Let fx(ei) be a element in the preimage ϕ−1x (πx(ei)) (we used that ϕx is surjective). Since O⊕nX,x is
a free module, this uniquely extends to a OX,x-module homomorphism fx such that the following
diagram commutes:

O⊕nX,x

Fx Gxϕx

πx
fx

Next we pick the representatives (ei, Ui), (fx(ei), Vi), (πx(ei),Wi) for ei, fx(ei), πx(ei). Let U := V ∩⋂n
i=1(Ui ∩ Vi ∩Wi). Then the diagram lifts to a commutative diagram of OX(U)-modules:

O⊕nX (U)

F (U) G(U)ϕU

πU
fU

It is clear that the diagram respects restrictions. So we have commutative diagram of OX -modules:

O⊕nU

F |U G|UϕU

πU
fU

Since πU is surjective, so is ϕU : F |U → G|U .

viii) The categorical kernel kerϕ is always a morphism. To clearify, the source object of kerϕ shall be
denoted by Kerϕ.

Let y ∈ X. Since F is of finite type, there exists openW ⊆ X and a surjection πW : O⊕nW → F |W . Since
G is coherent, we know that Ker(ϕW ◦πW ) is of finite type. Then, with possible restriction to a smaller
open set, we have a surjection σW : O⊕mW → Ker(ϕW ◦ πW ). By universal property of kernel, there
exists unique a morphism jW : Ker(ϕW ◦ πW )→ KerϕW . The composite jW ◦ σW : O⊕mW → KerϕW
is surjective.

Ker(ϕW ◦ πW ) O⊕nW

O⊕mW KerϕW F |W G|W

πW
ϕW

jW
σW

jW ◦ σW
This shows that Kerϕ is of finite type.Now we are given that ϕx is injective for some x ∈ X. Then
(Kerϕ)x = 0. Since Kerϕ is of fintie type, there exist an open V ⊆ X and a surjection αV :

O⊕pV → (Kerϕ)|V . The morphism on the stalk αx : O⊕pX,x → (Kerϕ)x sends the generators a1, ..., ap to
0 ∈ (Kerϕ)x. We pick representatives (ai, Ui) for each ai and let U := V ∩

⋂p
i=1 Ui. Then αx lifts to a

surjective zero map αU : O⊕pU → (Kerϕ)U . Hence (Kerϕ)U = 0, and ϕU : F |U → G|U is injective.
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Question 2

Motivation: Why is Nakayama’s Lemma useful in geometry? “Transferring information from pointwise to
infinitesimal to local”:

Recall Nakayama’s Lemma:

Let R be a ring, p ∈ SpecR, and M be a finitely generated R-module. If n1, ..., nd ∈ M is a
basis for the κ(p)-vector space Mp ⊗Rp κ(p), then n1, ..., nd generate the Rf -module Mf for some
f ∈ R \ p (indeed it is a minimal generating set).

(When R is a local ring with max ideal m, this becomes M/mM = 〈n1, ..., nd〉 =⇒ M = 〈n1, ..., nd〉)

i) Let (X,OX) be a scheme and F ∈ QCoh(X) of finite type. Then we call F (x) = Fx ⊗OX,x
κ(x) the

fibre.

Given s1, . . . , sn ∈ F (U) on open U 3 x, if (s1)x , . . . , (sn)x generate the fibre then possibly after
shrinking U , show that s1, ..., sn also generate F |U . Deduce that:

• if F (x) = 0 then F |U = 0 some open U 3 x.

• x 7→ dimF (x) is upper-semi-continuous, i.e. {dim < d} ⊆ X is open (since integer-valued can also
take 6 d.)

ii) Algebra fact. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence in R-Mod. Suppose that M2 is
flat. Then M3 flat ⇐⇒ M1/IM1 →M2/IM2 injective for all ideal I ⊆ R.

Let F ∈ OX -Mod be locally finitely presented (e.g. F ∈ Coh(X)). Prove that F ∈ Vect(X) ⇐⇒ F is
a flat OX -module.

[ Hint. Rewrite the algebra fact in case R local ring, you will use the case that I is the maximal ideal.
The key is to reach an exact sequence of type 0→ Nx/mxNx → K(x)⊕n → Fx/mxFx → 0 and use (i). ]

Proof. i) WLOG reduce to the affine case: X = SpecR. F = M̃ for some R-module M . x = p is a prime ideal
in R. Fx = Mp. OX,x = Rp. κ(x) = Rp/pRp. The fibre F (x) = Mp ⊗Rp κ(p). By Nakayama Lemma
above, (s1)x, ..., (sn)x generates F (x) implies that s1, ..., sn generate Mf for some f ∈ R \ p. Note that
M̃ |Df

= M̃f , so we take U = Df .

• If F (x) = 0, then (0)x generates F (x). By the previous part 0 generates F |U . So F |U = 0.

• If dimF (x) = d at x, then we can find (s1)x, ..., (sd)x that generate F (x). So s1, ..., sd generates
F |U for some U 3 x. Then dimF (y) 6 d for y ∈ U , since (s1)y, ..., (sd)y generate F (y). This
shows that {dim < d} is open.

ii) If F is a vector bundle, then locally F |U is free and hence is flat. Since flatness is a local property, F
is flat.

Conversely, suppose that F is flat. Since F is lovally finitely presented, locally we have

O⊕mU → O⊕nU → F |U → 0

Consider the exact sequence
0→ Kerϕ→ O⊕nU → F |U → 0

Strategy : Shrink U to make N := Kerϕ = 0. Suffices to show N(x) = 0.

Since F is a flat OX -module, the stalk Fx is a flat OX,x-module. First we localise the above exact
sequence:

0→ Nx → O⊕nX,x → Fx → 0
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We use the algebra fact. Since O⊕nX,x and Fx are flat, Nx/mxNx → O⊕nX,x/mxO⊕nX,x ∼= κ(x)⊕n is injective.
Note that Nx/mxNx

∼= Nx ⊗OX,x
OX,x/mx. We tensor OX,x/mx to the short exact above. We have

that
o→ Nx/mxNx → κ(x)⊕n → Fx/mxFx → 0

is right exact. It is in fact exact because the first nonzero map is injective.

If n = dimFx/mxFx = dimF (x), then the second nonzero map is an isomorphism and we are done.
If n > dimF (x), let (s1)x, ..., (sm)x generate F (x) (m < n). By (i) we have O⊕mU � F |U → 0. Then
we take N to be the kernel of the above map and follow the same argument.

Note: We need the fact: consider ker f → R⊕m → M → 0 and ker g → R⊕m → M → 0. If ker f is
finitely generated, then so is ker g.

Question 3

Motivation: Vect(SpecR) ←→ M̃ for finitely generated projective R-module M

Let X = SpecR. M is an R-module. Consider the following conditions.

(0) M̃ ∈ Vect(X). i.e. locally free of finite rank. i.e. there is a cover X =
⋃
Dfi withMfi finitely generated

free Rfi-module.

(1) M is finitely presented and flat.

(2) M is finitely presented and Mm is a free Rm-module for all maximal ideals m (can also use all prime
ideals).

(3) M is the direct summand of a finite rank free module.

(4) M is finitely generated and projective.

i) Prove that (0) ⇐⇒ (1).

[ Hint. For ⇐= use 2.(ii). For =⇒ compare the proof in Sec 3.1 of notes, use tricks from Sec 3.0,
and use fact that in the short exact sequence 0→ K →M1 →M2 → 0, M1 is finitely generated and M2

is finitely presented implies that K is finitely generated. ]

ii) Prove that (0) & (1) ⇐⇒ (2), and (4) ⇐⇒ (3) =⇒ (1).

iii) Finally prove that (0) =⇒ (4).

[ Hint. use Sec 3.0 of notes and the fact about localisation: for M finitely presented,
S−1HomR(M,N) = HomS−1R(S−1M,S−1N). ]

Proof. i) “(1) =⇒ (0)”: Suppose thatM is finitely presented and flat. We need to prove that M̃ is locally finitely
presented and flat as a OX -module. Since flatness is a local property, we have

M is a flat R-module ⇐⇒ ∀ p ∈ SpecR : Mp is a flat Rp-module (A&M Prop. 3.10)

⇐⇒ ∀ p ∈ X : M̃p is a flat OX,p-module

⇐⇒ M̃ is a flat OX -module

Since M is finitely presented, we have an exact sequence

R⊕m R⊕n M 0

R⊕m, R⊕n,M are global sections of OX -modules O⊕mX ,O⊕nX , M̃ . So M̃ is locally finitely presented.
Now by Question 2.(ii), we have M̃ ∈ Vect(X).
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“(0) =⇒ (1)”: Suppose that M̃ ∈ Vect(X). There is a finite cover of X by basic open sets Dfi with
Mfi
∼= (Rfi)

⊕ni for some ni.

We can take the generators e1, ..., eni of Mfi . Let ej = ϕi(hj)/f
mj

j , where hj ∈M and ϕi : M →Mfi

is the localisation map. Take Ai := {h1, ..., hni}, and A =
⋃
iAi. Therefore we have a R-module

homomorphism α : R⊕A →M . Since X =
⋃
iDfi , for any p ∈ X, the induced morphism on the stalk

αp : R⊕Ap → Mp is surjective. Hence α is surjective. M is finitely generated. We have a short exact
sequence

0 K R⊕A M 0

Now we take the localisation to fi again. Since localisation is exact, we have the short exact sequence

0 Kfi R⊕Afi Mfi 0

By the hint, sinceMfi is finitely presented and R⊕Afi is finitely generated, then Kfi is finitely generated.
Similar to the proof above, we have that K is finitely generated. Hence M is finitely presented.

In particular, M̃ is locally finitely presented. We use Question 2.(ii) again to deduce that M̃ is a flat
OX -module. Hence M is a flat R-module.

ii) “(0)(1) =⇒ (2)”: Since M̃ is locally free of finite rank, it is free of finite rank at the stalk level. This
means that M̃p = Mp is a free Rp-module for all p ∈ X.

“(2) =⇒ (0)”: First we prove that Mp is a free Rp-module for all p ∈ X. For any p ∈ X, let m be a
maximal ideal containing p. Suppose that Mm

∼= R⊕Im . Then Mp
∼= (Mm)p ∼= (R⊕Im )p ∼= R⊕Ip . Hence

Mp is free.

Next, consider p ∈ X and isomorphism α : R⊕Ip → Mp. Since M is fintiely presented, so is Mp. In
particular we may take I to be a finite set. Since M̃ is of finite type, by the (first) lemma in Section
6.2 of the notes, there exists an open U 3 p and a morphism of OU -modules ϕ : O⊕IU → M̃ |U such that
ϕp = α. Using the same method in the prood of “(0) =⇒ (1)”, we can prove that Kerϕ(V ) is finitely
generated for any open V ⊆ U . Hence Kerϕ is of finite type. By the second lemma in Section 6.2 of
the notes, we deduce that ϕ is an isomorphism. Hence O⊕IU ∼= M̃ |U . In other words, M̃ ∈ Vect(X).

“(3) =⇒ (4)”: Suppose thatM is direct summand of a finite rank free module. That is, R⊕n = M⊕N .
Let g : A→ B be any epimorphism and f : M → B be any R-module homomorphism. Then we have
the commutative diagram:

A

Rn M B
α f

g

β

h

α : M ⊕N → M and β : M → M ⊕N are the projection and inclusion maps. Since Rn is free, it is
projective, and hence there exist a lift h of f ◦ α. Then h ◦ β is a lift of f . Hence M is projective.

“(4) =⇒ (3)”: Suppose that M is finitely generated and projective. Then we have a short exact
sequence

0 K R⊕n M 0

Since M is projective, the sequence splits. We have R⊕n ∼= M ⊕K. Hence M is a direct summand of
a finite rank free module.

“(3)(4) =⇒ (1)”: Suppose that M is finitely generated and projective. Then TorRn (A,M) = 0 for any
R-module A and n > 1. In particular, let 0 → A → B → C be a short exact sequence. We look at
the induced long exact sequence of Tor. Since TorR1 (C,M) = 0, we have an exact sequence



7

0 = TorR1 (C,M) A⊗RM B ⊗RM C ⊗RM 0

Hence −⊗RM is exact. M is flat. Since M is finitely generated, the short exact sequence 0→ K →
R⊕n →M → 0 gives a finite presentation for M .

iii) “(0) =⇒ (4)”: In the proof of “(0) =⇒ (1)” we have shown that M is finitely generated. To prove that
M is exact, we need to prove that HomR(M,−) is exact. Let 0→ A→ B → C → 0 be a short exact
sequence. Consider the sequence

0 HomR(M,A) HomR(M,B) HomR(M,C) 0

Since M is finitely presented, by the hint, we look at the localisation at fi:

0 HomR(M,A)fi HomR(M,B)fi HomR(M,C)fi 0

0 HomRfi
(Mfi , Afi) HomRfi

(Mfi , Bfi) HomRfi
(Mfi , Cfi) 0

∼= ∼= ∼=

We know thatMfi is free as an Rfi-module. So HomRfi
(Mfi ,−) is exact. The above sequence is exact.

Now as {Dfi} covers X, by the local algebra theorem, we deduce that the sequence before localisation
is exact. Hence M is projective.

Question 4

i) Let X = SpecR. M is an R-module.

• Show that L = M̃ is a line bundle ⇐⇒ ∀ p ∈ X ∃ f ∈ R \ p : Mf
∼= Rf .

• Show that L = M̃ is a line bundle ⇐⇒ M is a finitely generated projective R-module with
dimκ(p)M ⊗ κ(p) = 1 for all p ∈ X.

Deduce that every line bundle on A1
k = Spec k[t] is trivial.

[ Hint. Structure theorem for finitely generated modules over PID. ]

ii) Let F ∈ Vect(X). Describe the transition function of the dual F∨ := HomOX
(F,OX).

Deduce that for a line bundle L, the transition function of L∨ is the inverse of that of L and

L ⊗OX
L∨ = L ⊗OX

HomOX
(L,OX) ∼= OX

via the natural evaluation map.

iii) LetM,N beR-modules. Suppose that ϕ : M⊗RN
∼=−→ R. Pickmi ∈M , ni ∈ N with ϕ

(∑d
i=1mi ⊗ ni

)
=

1. Check that M → M,m 7→
∑
ϕ (m⊗ ni)mi is an isomorphism which factorises as M → Rd → M

and deduce that M is a summand of Rd.

iv) Show that L ∈ OX -Mod is a line bundle ⇐⇒ there exists F ∈ QCoh(X) such that F ⊗OX
L ∼= OX

(definition of L being invertible sheaf ). (In fact, enough to require F ∈ OX-Mod, but tricky)

[ Hint. combine (iii) with 3.(3). ]

Proof. i) • By definition (and using Section 7.6),

M̃ is a line bundle ⇐⇒ ∀ p ∈ X ∃U ∈ Top(X) (p ∈ U ∧ M̃ |U ∼= OU )

⇐⇒ ∀ p ∈ X ∃ f ∈ R \ p (M̃ |Df

∼= ODf
)

⇐⇒ ∀ p ∈ X ∃ f ∈ R \ p (Mf
∼= Rf )
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• Note that for p ∈ X,

M ⊗R κ(p) = M ⊗R (Rp/pRp) ∼= M ⊗R Rp ⊗Rp (Rp/pRp) ∼= Mp ⊗Rp (Rp/pRp) ∼= Mp/pMp

Therefore,

dimκ(p)(M ⊗R κ(p)) = 1 ⇐⇒ Mp/pMp
∼= κ(p) = Rp/pRp as κ(p)-modules

If M̃ is a line bundle, then using Mf
∼= Rf and taking direct limits, we have Mp

∼= Rp. Hence
Mp/pMp

∼= κ(p). Conversely, suppose that M is finitely generated and projective, then by Ques-
tion 3, M̃ is a vector bundle over X. And we have Mp

∼= (Rp)
⊕n for some n ∈ N. Then

Mp/pMp
∼= κ(p)⊕n. Then dimκ(p)(M ⊗R κ(p)) = 1 implies that n = 1. Hence Mp

∼= Rp for all
p ∈ X. This shows that M̃ is a line bundle.

Suppose that L is a line bundle on A1
k. Then L ∈ QCoh(A1

k) and by Section 7.6 of the notes, we have
L = M̃ for some k[t]-module M . By the above result, M is finitely generated and projective. Since
k[t] is a PID, and M is torsion-free (since it is projective), by the structure theorem M ∼= (k[t])⊕n for
some n ∈ N. Let p = 〈t〉. Then κ(〈t〉) = k. We have dimk(M ⊗k[t] k) = dimk k

n = n. Since L is a line
bundle, we deduce that n = 1. So L = OA1

k
is a trivial line bundle.

ii) Without loss of generality we assume that X is connected. Let {U1, ..., Un} be an open cover of X.
For each Ui we can pick a local trivialisation of L as σi : L|Ui

→ O⊕nUi
. If Uij := Ui ∩ Uj 6= ∅, the

transition function αij : O⊕nUij
→ O⊕nUij

is the morphism such that the following diagram commutes:

L|Uij

O⊕nUij
O⊕nUij

αij

σi σj

Let βij be the corresponding transition function of L∨. We claim that βij = (α−1ij )> = α>ji as matrices
over OX(Uij). (To be proven...)

Suppose that L is a line bundle. Let ev : L ⊗OX
L∨ → OX be the natural evaluation map. Let

{U1, ..., Un} be an open cover of X such that L|Ui
∼= OUi . It is trivial that the restriction evUi is an

isomorphism. Then ev is given by gluing evUi .

iii) Following the question, ϕ : M ⊗RN → R is an isomorphism and ϕ(
∑

imi ⊗ ni) = 1. Let α : M →M

be the R-module homomorphism given by m 7→
∑

i ϕ(m⊗ ni)mi. In fact, α is the composition of the
isomorphisms:

M M ⊗R R M ⊗R (M ⊗R N) (M ⊗R N)⊗RM R⊗RM M

m m⊗ 1
∑

im⊗ (mi ⊗ ni)
∑

i(m⊗ ni)⊗mi
∑

i ϕ(m⊗ ni)⊗mi
∑

i ϕ(m⊗ ni)mi

id⊗ϕ−1 ϕ⊗ id

Note that α : M →M factorises as

M Rd M

m (ϕ(m⊗ n1), ..., ϕ(m⊗ nd))
∑d

i=1 ϕ(m⊗ ni)mi

(r1, ..., rn)
∑d

i=1 rimi

The map Rd →M extends to a short exact sequence 0→ K → Rd →M → 0. Since Rd →M admits
a section, the sequence splits. Hence M is a direct summand of Rd.
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iv) Suppose that L is a line bundle. By (ii) we have that L⊗OX
L∨ ∼= OX , where L∨ ∈ QCoh(X) because

it is also a line bundle.

Conversely, suppose that F is a OX -module such that F ⊗OX
L ∼= OX . We have F = M̃ for some

R-module M . For p ∈ X, we have a OX,p-module isomorphism ϕp : Lp ⊗OX,p
FptoOX,p. Let mi ∈ Lp

and ni ∈ Fp such that ϕp(
∑d

i=1mi ⊗ ni) = 1 ∈ OX,p. We choose representatives (mi, Ui), (ni, Vi) for
mi, ni. Let U =

⋂d
i=1(Ui ∩ Vi). Then ϕp lifts to a OU -module isomorphism ϕU : L|U ⊗OU

F |U ∼= OU .
By the same method in (iii), we can show that L|U is a direct summand of O⊕dU . Hence L is a vector
bundle. In particular, L is quasi-coherent and L = M̃ for some R-module M . Similarly, F is also
quasi-coherent and F = Ñ for some R-module N . In particular we have M ⊗R N ∼= R as R-modules.

Finally, to show that L is a line bundle, by (i) it suffices to show that dimκ(p)(M ⊗R κ(p)) = 1. Note
that

1 = dimκ(p) κ(p) = dimκ(p)(R⊗R κ(p)) = dimκ(p)(M ⊗R N ⊗R κ(p))

= dimκ(p)((M ⊗R κ(p))⊗κ(p) (N ⊗R κ(p)))

= dimκ(p)(M ⊗R κ(p)) · dimκ(p)(N ⊗R κ(p))

Hence dimκ(p)(M ⊗R κ(p)) = 1. This finishes the proof.

Question 5

Fact. every line bundle on Ank is trivial.

i) Calculate Pic(Pn) = {isomorphism classes of line bundles on Pn} with group operation − ⊗OPn −. In-
deed show it is ∼= Z, generated by O(1).

ii) Compute Γ(Pn,O(d)) for d ∈ Z. (O(d) = O(1)⊗d)

iii) Let p be the point (x) ∈ Spec k[x] = A0 in P1
k = A0 ∪A1. Show that O(−1) ∼= ideal sheaf of {p}.

Let Z be the closed subscheme Spec(k[x]/xd) ⊆ A0 ⊆ P1
k. Show that O(−d) ∼= ideal sheaf of Z.

What is the ideal sheaf of d closed points {p1, ..., pd} ⊆ P1?

iv) Show that if two graded R-mods M,N over graded ring R satisfy Mn
∼= Nn (in graded sense) for n > d,

then M̃ = Ñ . (See Sec 10 notes)

Proof. i) Let U0, ..., Un be the affine open sets of Pnk . From the fact we know that ϕi : L|Ui
→ OUi is an

isomorphism. The transition function αij : OUij → OUij is a unit in the ring Rij .

We know that PicPnk ∼= Ȟ1(P1
k,OP1

k
). (αij) are identified if they differ by a factor from k.

Line bundle O(m) defined by (αij) =

(
xi
xj

)m
. O(m) = O(1)⊗m, where tensoring comes from multi-

plying the transition functions.

PicPnk ∼= Z.

ii) For d < 0, Γ(Pnk ,O(d)) = 0; for d > 0, Γ(Pnk ,O(d)) ∼= k[x0, ..., xn]d is the d-th grading.

iii)
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Question 6

i) Let C be an Abelian category. Show that if every object M ∈ C has a injective morphism M → I

into an injective object, then every object M admits an injective resolution. (We say C has “enough
injectives’.)

Fact. Ab has enough injectives.

ii) Let F ∈ Ab(X). Pick Ix ∈ Ab such that Fx → Ix is an injective morphism and Ix is an injective object
in Ab. Show that I :=

∏
x∈X

(ϕx)∗Ix ∈ Ab(X) (inclusion map ϕx : {x} ↪→ X of a point) is an injective

object admitting an injective morphism F → I. (Hence Ab(X) has enough injectives.)

Proof. i) We construct an injective resolution for M inductively. Firstly, since C has enough injectives, we have
a monomorphism ε : M → I0 where I0 is some injective object. Now suppose that we have constructed

M I0 · · · In−1 Inε d0 dn−1

Let coker dn−1 : In → Cn be the cokernel of dn−1. Since C has enough injectives, we have a monomor-
phism φn : Cn → In+1. Let dn := φn ◦ coker dn−1 : In → In+1. Then ker dn = ker coker dn−1 =

im dn−1. Hence the sequence is exact at In. By induction, we have constructed a sequence which is
exact at each injective object In:

M I0 I1 I2 I3 · · ·ε d0 d1 d2

This is an injective resolution for M .

ii) We use the following criterion for an object being injective:

I ia an injective object if and only if Hom(−, I) is an exact functor.

We define a morphism ϕ : F → I by the following. For an open set U ⊆ X, let ϕU : F (U) →
I(U) ∼=

∏
x∈U

(ϕx)∗Ix, s 7→
∏
x∈U

ιx(sx), where ιx : Fx → Ix is the given monomorphism. Note that ϕ

is an monomorphism if and only if ϕU is injective for all open U ⊆ X. Let s, s′ ∈ F (U) such that
ϕU (s) = ϕU (s′). By definition we have

∏
x∈U

ιx(sx) =
∏
x∈U

ιx(s′x). Then ιx(sx − s′x) = 0 for all x ∈ U .

Since ιx is injective, sx = s′x for all x ∈ U . Hence (Question 2 of Sheet 1) s = s′ ∈ F (U). So ϕU is
injective. We deduce that ϕ : F → I is an monomorphism.

Then we shall show that Hom(−, I) is exact. Let 0→ A→ B → C → 0 be a short exact sequence in
Ab(X). Take x ∈ X. Then 0 → Ax → Bx → Cx → 0 is exact by Question 1. Since Ix is injective,
HomAb(−, Ix) is exact. So we have a short exact sequence

0 HomAb(Cx, Ix) HomAb(Bx, Ix) HomAb(Ax, Ix) 0

The functor
∏
x∈X is exact by Question 4 of Sheet 3 of C2.2 Homological Algebra. So we have a short

exact sequence

0
∏
x∈X

HomAb(Cx, Ix)
∏
x∈X

HomAb(Bx, Ix)
∏
x∈X

HomAb(Ax, Ix) 0

Finally, note that

HomAb(X)(A, I) = HomAb(X)

(
A,
∏
x∈X

(ϕx)∗Ix

)
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∼=
∏
x∈X

HomAb(X)(A, (ϕx)∗Ix)

∼=
∏
x∈X

HomAb(ϕ−1x A, Ix)

∼=
∏
x∈X

HomAb(Ax, Ix)

So we have an short exact sequence

0 HomAb(X)(C, I) HomAb(X)(B, I) HomAb(X)(A, I) 0

We deduce that HomAb(X)(−, I) is exact. So I is an injective object. In conclusion, Ab(X) has enough
injectives.


