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Section A: Introductory

Question 1. Projective space is locally affine

For 0 … j … n, consider the map ¡ j : U j !An defined in lectures, mapping the j th affine coordinate patch U j µPn

to affine n-space. Using the Zariski topology of projective varieties on Pn restricted to U j , and the Zariski topology
of affine varieties onAn , show that ¡ j is a homeomorphism of topological spaces.

Proof. Without loss generality we fix j = 0. Then'0 : U0 !An is given by [x0 : x1 : · · · : xn] 7!
µ

x1

x0
, ....,

xn

x0

∂
. It has an inverse

'°1
0 :An !U0 given by (x1, ..., xn) 7! [1 : x1 : · · · : xn]. To show that'0 is a homeomorphism, it suffices to show that

X is closed in U0 µPn () '0(X ) is closed inAn

=) Suppose that X is closed in U0. Then X =V
°≠

f1, ..., fm
Æ¢
\U0, where f1, ..., fm 2 k[x0, ..., xn] are homogeneous

polynomials. Let º : k[x0, ..., xn] ! k[x1, ..., xn] be the ring homomorphism induced by x0 7! 1. By definition
we have º( fi ) = fi ±'°1

0 as maps onAn . Then for a 2An ,

a 2'0(X ) () '°1
0 (a) 2 X

() 8 i 2 {1, ...,m} fi ±'°1
0 (a) = 0

() 8 i 2 {1, ...,m} º( fi )(a) = 0

() a 2V
°≠
º( f1), ...,º( fm)

Æ¢

Hence '0(X ) =V
°≠
º( f1), ...,º( fm)

Æ¢
is closed inAn .

(= Suppose that '0(X ) is closed in An . Let '0(X ) = V
°≠

g1, ..., gk
Æ¢

. Let ∂ : k[x1, ..., xn] ! k[x0, x1, ..., xn] be the
homogenisation. Then by definition ∂(gi ) = gi ±'0 as maps on U0. For a 2U0,

a 2 X () '0(a) 2'0(X )

() 8 i 2 {1, ...,k} gi ±'0(a) = 0

() 8 i 2 {1, ...,k} ∂(gi )(a) = 0

() a 2V
°≠
∂(g1), ...,º(gk )

Æ¢

Hence X =U0 \V
°≠
∂(g1), ...,º(gk )

Æ¢
is closed in U0.

We conclude that '0 is a homeomorphism.

Question 2. Projective closures and affine cones

(a) Let X be the parabola V
°
y °x2¢ µA2. What is its projective closure X µ P2? Draw the affine cone bX over X ,

inA3, and identify the line corresponding to the "point at infinity" on X .

(b) Show that the affine varieties V
°
y °x2¢ µ A2 and V

°
y °x3¢ µ A2 are isomorphic. Can you give an intuitive

explanation why their two projective closures in P2 are not projectively equivalent (isomorphic)? We do not
have the tools yet to prove that they are non-isomorphic; try and find an intuitive reason.

Proof. (a) The projective closure is obtained by taking the homogenisations of the generators of the vanishing ideal.
Then X =V

°
y z °x2¢µP2. The affine cone of X inA3 is shown in the following diagram:
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Figure 1: V
°
y z °x2¢ in R3 for y, z > 0. The variety also has a symmetric part in y, z < 0.

where the line of infinity corresponds to x = z = 0.

(b) Let ' : A1 ! V
°
y °x2¢ be a morphism given by t 7! (t , t 2). Then it is easy to see that ' is an isomorphism.

Similarly √ : A1 ! V
°
y °x3¢, t 7! (t , t 3) is also an isomorphism. Hence we have V

°
y °x2¢ ª= V

°
y °x3¢ as

affine varieties.

Their projection closures are given by V
°
y z °x2¢ and V

°
y z2 °x3¢ µ P2. We have degV

°
y z °x2¢ = 2 6= 3 =

degV
°
y z2 °x3¢. Note that a projective linear transformation does not change the degree of the variety be-

cause it maps a projective line to a projective line in P2. Therefore the two projective varieties cannot be
projectively equivalent.

Section B: Core

Question 3. The Twisted Cubic

The projective variety C =V (F0,F1,F2) µP3, where

F0 (z0, z1, z2, z3) = z0z2 ° z2
1

F1 (z0, z1, z2, z3) = z0z3 ° z1z2

F2 (z0, z1, z2, z3) = z1z3 ° z2
2

is known as the twisted cubic.

(a) Show that C is equal to the image of the Veronese map

∫ :P1 !P3

∫ : [x0 : x1] 7!
£
x3

0 : x2
0 x1 : x0x2

1 : x3
1
§

(b) Restrict to the affine patch U0 µP3 given by setting z0 = 1. Show that C \U0 is equal to V
°

f0, f1
¢
µA3, where

fi (z1, z2, z3) := Fi (1, z1, z2, z3) for i = 1,2.

(c) For i = 0,1,2 we write Qi for the quadric hypersurface V (Fi ) µ P3. Show that, for i 6= j , the hypersurfaces
Qi and Q j intersect in the union of C and a line. Therefore no two of them alone may be used to define
C . Deduce that the homogenizations of the generators of an affine ideal do not necessarily generate the
homogeneous ideal of the projective closure, showing that indeed we need to homogenise all elements of
the affine ideal.
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Proof. (a) We can directly verify that im∫µC :

F0
°
x3

0, x2
0 x1, x0x2

1, x3
1
¢
= x3

0 · x0x2
1 ° (x2

0 x1)2 = 0

F1
°
x3

0, x2
0 x1, x0x2

1, x3
1
¢
= x3

0 x3
1 °x2

0 x1 · x0x2
1 = 0

F2
°
x3

0, x2
0 x1, x0x2

1, x3
1
¢
= x2

0 x1 · x3
1 ° (x0x2

1)2 = 0

On the other hand, suppose that [z0 : z1 : z2 : z3] 2 C . Since t 7! t 3 is surjective in k, we can put z0 = t 3 and
z3 = s3. Then

t 3z2 = z2
1, t 3s3 = z1z2, s3z1 = z2

2

From the first two equations, we have

z3
1 = t 3z1z2 = t 6s3 =) z1 =!t 2s

where ! is a third root of unity. Let u =!s. Then the third equation implies that

u4t 2 = z2
2 =) z2 =±u2t

substituting into the second equation we obtain that z2 = u2t . Hence [z0 : z1 : z2 : z3] = [t 3 : t 2u : tu2 : u3] 2
im∫.

We conclude that im∫=C .

(b) We have C \U0 =
©
(x1, x2

1, x3
1) : x1 2A1™ and V

°
f0, f1

¢
=V

°
z2 ° z2

1, z3 ° z1z2
¢
µU0. It is obvious that C \U0 =

V
°

f0, f1
¢

in U0
ª=A3.

(c) By observation

Q0 \Q1 =V(F0,F1) =C [ {z0 = z1 = 0}

Q0 \Q2 =V(F0,F2) =C [ {z1 = z2 = 0}

Q1 \Q2 =V(F1,F2) =C [ {z2 = z3 = 0}

This shows that only homogenising the generators of the affine ideal is not sufficient.

Question 4. Veronese varieties

(a) Show that any projective variety is isomorphic to the intersection of a Veronese variety with a linear space,
the projectivisation P(V ) of some k-vector subspace V µ kn+1.

(b) Deduce that any projective variety is isomorphic to an intersection of quadric hypersurfaces.

Proof. (a) Let X =V(I ) µ Pn be a projective variety where I is a finitely generated homogeneous ideal. We claim that
X can be the of vanishing loci of homogeneous polynomials of the same degree. Suppose that I =

≠
f1, ..., fk

Æ

with deg fi = di . Let d := max{di : 1 … i … k}. For each i , we note that

V
°

fi
¢
=V

≥
xd°di

0 fi , ..., xd°di
n fi

¥

Hence

X =
k\

i=1
V

°
fi

¢
=

k\

i=1
V

≥
xd°di

0 fi , ..., xd°di
n fi

¥
=V(J )

where J is generated by homogeneous polynomials of degree d . For simplicity we rewrite the generators
for J as g1, ..., g`, where gi =

X

|I |=d
ai ,I xI for multi-induces I . Let ∫d : Pn ! P(n+d

d )°1 be the Veronese embed-

✓

✓

✓

↳Why ? Some justification is

needed !

I✓ I

A-

✓

✓
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dm
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ding. Note that each gi factors through the pullback: gi = ∫§d (hi ), where each hi is a linear polynomial over

P(n+d
d )°1. Let Yi =V(hi ) µP(n+d

d )°1 be the corresponding hyperplane. ThenV
°
gi

¢ª= Yi \ im∫d . Hence

X =
\̀

i=1
V

°
gi

¢ª=
\̀

i=1
Yi \ im∫d

The intersection
\̀

i=1
Yi is a projectivisation of a subspace of k(n+d

d ), and im∫d is a Veronese variety.

(b) From the lectures we know that
im∫d =

\

I+J=K+L
V

°
xI xJ °xK xL

¢

Hence im∫d is an intersection of hypersurfaces. On the other hand, every Yi is a intersection of hypersur-
faces:

Yi =V(hi ) =
\

|J |=d
V

°
xJ hi

¢

Hence the projective variety X is isomorphic to an intersection of some hypersurfaces.

Question 5. The ruled surface

The image of the Segre morphism æ1,1
°
P1 £P1¢=ß1,1 µP3 is known as the ruled surface.

(a) What equations define ß1,1 as a subvariety of P3?

(b) What are the images in ß1,1 of {p}£P1 and P1 £ {p}? Show that through any point in ß1,1 there are two lines
lying in ß1,1.

(c) Exhibit some disjoint lines inß1,1. Recall thatP1£P1 ª=ß1,1. Is this isomorphic toP2? Draw the "real cartoons"
of either surface.

Proof. (a) The Segre embedding is given by

æ1,1 :
°
[x : y], [u : v]

¢
7!

"√
xu xv
yu y v

!#

We claim that ß1,1 =V(z00z11 ° z10z01). It is clear that ß1,1 µV(z00z11 ° z10z01) as xu · y v °xv · yu = 0. On the
other hand, if z00z11 ° z10z01 = 0, then the matrix

M =
√

z00 z01

z10 z11

!

has rank 1. Let (x, y) spans the 1-dimensional column space and (u, v) spans the one dimensional row space.
Then M = (x, y)>(u, v). Hence V(z00z11 ° z10z01) µß1,1.

(b) By applying a projective transformation we may assume that p = [1 : 0]. Then we have

æ1,1({p}£P1) =
("√

u v
0 0

!#
: u, v 2 k

)
, æ1,1(P1 £ {p}) =

("√
x 0
y 0

!#
: x, y 2 k

)

These are two projective lines in P3 intersecting at the point

"√
1 0
0 0

!#
.

For q 2 ß1,1, let q = æ1,1(p1, p2). Then q lies in the intersection of the projective lines æ1,1({p1}£P1) and
æ1,1(P1 £ {p2}) in ß1,1.

of 1pm

±
[
as Vd is a closed
immersion

✓
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(c) The following are two disjoint lines in ß1,1:

("√
u v
0 0

!#
: u, v 2 k

)
,

("√
0 0
u v

!#
: u, v 2 k

)

Suppose that ß1,1
ª= P2. Then the image of the two disjoint curves under the isomorphism is two disjoint

plane curves on P2. But we know from B3.4 Algebraic Curves that any two projective curves on P2 intersect
in at least one point. Contradiction. Hence ß1,1 6ª=P2.

Figure 2: The real slice of an affine patch of the surface ß1,1 µP3.

Question 6. Rational normal curves

Fix a positive integer d > 1.

(a) Let G (x0, x1) = Qd+1
i=1 (bi x0 °ai x1) be a homogeneous degree (d +1) polynomial with distinct roots [ai : bi ] 2

P1. Show that Hi (x0, x1) =G (x0, x1)/(bi x0 °ai x1) form a basis for the space of homogeneous polynomials of
degree d .

(b) Deduce that the image of the map µd :P1 !Pd defined by

[x0 : x1] 7! [H1 (x0, x1) : · · · : Hd+1 (x0, x1)]

is projectively equivalent to the image of the Veronese embedding, that is, it is a rational normal curve of
degree d .

(c) What is the image of the point [ai : bi ] under µd ? If (ai ,bi ) are nonzero for all i , what is the image of [1 : 0] and
[0 : 1]?

(d) Deduce that through any d +3 points in general position in Pd , there passes a unique rational normal curve
of degree d . (Recall that for d +3 points to be in general position means that no subset of d +1 of these points
lies on a hyperplane in Pd .)

Proof. (a) Let V be the space of homogeneous polynomials of degree d . Then dimV = d+1. So it suffices to check that

{H1, ..., Hd+1} is linearly independent. Suppose that
d+1X

i=1
∏i Hi = 0. Evaluating at [ai : bi ] we have∏i H(ai ,bi ) =

0. By definition H1(ai ,bi ) 6= 0. Hence ∏i = 0. This implies that {H1, ..., Hd+1} is a basis of V .

÷A-

✓
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(b) The Veronese embedding ∫d : P1 !Pd is given by

[x0 : x1] 7!
h

xd
0 : xd°1

0 x1 : · · · : x0xd°1
1 : xd

1

i

Since xd
0 , xd°1

0 x1, ..., x0xd°1
1 , xd

1 is a basis of V , there exists a change-of-basis endomorphism T 2 GL(V ) such
that T (Hi (x0, x1)) = xd°i+1

0 xi°1
1 . T induces a projective transformation eT 2 PGLn(k) which maps imµd to

im∫d . Hence imµd is projectively equivalent to the rational normal curve im∫d .

(c) We know that H j (ai ,bi ) = 0 for j 6= i and Hi (ai ,bi ) 6= 0. Hence

µd ([ai ,bi ]) = [0 : · · · : 0 : Hi (ai ,bi ) : 0 : · · · : 0] = [0 : · · · : 0 : 1 : 0 · · · : 0]

If ai bi 6= 0 for all i , then

µd ([1 : 0]) =
∑

1
b0

: · · · :
1

bn

∏
, µd ([0 : 1]) =

∑
1

a0
: · · · :

1
an

∏

(d) By the general position theorem, there exists a projective transformation which put the points in the coor-
dinates

Æi = [0 : · · · : 0 : 1 : 0 · · · : 0], 0 … i … n, Æn+1 = [1 : · · · : 1], Æn+2 = [c0 : · · · : cn]

We claim that the points [1 : c0], ..., [1 : cn] are distinct. Suppose that [1 : ci ] = [1 : c j ], then ci = c j . Then
Æ0, ..., cÆi , cÆ j , ...,Æn ,Æn+1,Æn+2 spans a hyperplane of Pn , which is contradictory to the assumption. Hence
the claim is proven. Similarly, we cannot have ci = 0 for some i .

Now we take ai = 1, bi = c°1
i . Then by the result of part (c), we have Æ0, ...,Æn+2 2 imµd . There exists a

rational normal curve passing through d +3 points in general position in Pd .

The uniqueness is much harder to show. The linear algebra technique in the proof of five points determining
a conic is not applicable here...

Section C: Optional

Question 7. Projective variety corresponding to a graded ring

If R =P
d 0 Rd is a graded ring and e   1 is an integer, we define

R(e) :=
X

d 0
Rde

We define a grading on R(e) by letting R(e)
d := Rde .

(a) Find k [x0, x1](2), expressing it in the form k [z0, . . . , zn]/I for some n and I .

(b) Find the homogeneous coordinate rings S
°
P1¢ and S

°
∫2

°
P1¢¢. Comment in the context of part (a).

(c) More generally, show that S (∫e (Pn)) ª= k [x0, . . . , xn](e), and hence that k [x0, . . . , xn](e) defines the same projec-
tive variety as k [x0, . . . , xn].

(d) Are k [x0, . . . , xn](e) and k [x0, . . . , xn] isomorphic as graded k-algebras? Are they isomorphic as (ungraded)
k-algebras? What does this imply about the affine cones of ∫e (Pn) and Pn?

Proof. (a) As a k-algebra, k[x0, x1](2) is generated by x2
0, x0x1, x2

1. These polynomials satisfy the relation x2
0 ·x2

1°(x0x1)2 =
0. Hence we have k[x0, x1](2) ª= k[z0, z1, z2]/

≠
z0z2 ° z2

1

Æ
.

(b) The homogeneous coordinate ring of P1 is just the polynomial ring. S(P1) = k[x0, x1].

I
✓

How come?

(✓ )

d ✓
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✓
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✓

✓
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Since ∫2(P1) =V
°
z0z2 ° z2

1

¢
, we have S(∫2(P1)) = k[z0, z1, z2]/

≠
z0z2 ° z2

1

Æ
.

From part (a), we note that S(∫2(P1)) ª= k[x0, x1](2).

(c) From the lectures we know that
∫e (Pn) =

\

I+J=K+L
V

°
zI zJ ° zK zL

¢

which implies that

S(∫e (Pn)) = k[x0, ..., xn]X

I+J=K+L

≠
xI xJ °xK xL

Æ

k[x0, ..., xn](e) is generated as a k-algebra by {xI : |I | = e}. The relations satisfied by this set are exactly {xI x J =
xK xL : I + J = K +L}. Hence

S(∫e (Pn)) ª= k[x0, ..., xn](e)

Since Pn ª= ∫e (Pn) are projective varieties, we deduce that k[x0, ..., xn] and k[x0, ..., xn](e) are isomorphic ho-
mogeneous coordinate rings.

(d) We assume that e > 1.

If k[x0, ..., xn] ª= k[x0, ..., xn](e) as graded k-algebras, then k[x0, ..., xn]1
ª= k[x0, ..., xn](e)

1 = k[x0, ..., xn]e as Abelian
groups. However, we have

k[x0, ..., xn]1
ª=Z©(n+1), k[x0, ..., xn]e

ª=Z©(n+e
e )

as Abelian groups. Therefore k[x0, ..., xn] and k[x0, ..., xn](e) are not isomorphic as graded k-algebras.

k[x0, ..., xn] and k[x0, ..., xn](e) are not isomorphic as k-algebras, because k[x0, ..., xn] is free and k[x0, ..., xn](e)

is not.

The result suggests that the affine cone of Pn and ∫e (Pn) are not isomorphic.
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