Peize Liu St. Peter's College University of Oxford

Problem Sheet 2 B1.2: Set Theory

We use the first-order language $\mathcal{L} := \{ \in, \subseteq; P, \bigcup, \mathcal{P}; \varnothing, \omega \}$, where \in and \subseteq are binary predicates, P is a binary function, \bigcup and \mathcal{P} are unary functions, and \varnothing and ω are constants.

The equality symbol \doteq is used in $\mathcal L$ which indicates that two terms have the same value under any model and assignment. The equality symbol = is used in metalanguage which indicates that two strings are equal.

The ZFC axioms we shall use in this sheet are listed below:

- **ZF1** Extensionality: $\forall x \forall y (\forall z (z \in x \leftrightarrow z \in y) \leftrightarrow x = y)$;
- **ZF2** *Empty Set*: $\forall x \neg x \in \varnothing$;
- **ZF3** Pairs: $\forall x \forall y \forall z (z \in P(x, y) \leftrightarrow (x \doteq z \lor y \doteq z));$
- **ZF4** Unions: $\forall x \forall y (y \in \bigcup x \leftrightarrow \exists z (y \in z \land z \in x));$
- **ZF5** Comprehension Scheme: Let $\varphi \in \text{Form}(\mathcal{L})$ and $z, w_1, ..., w_k \in \text{Free}(\varphi)$. Then $\forall x \forall w_1 \cdots \forall w_k \exists y \forall z (z \in y \leftrightarrow (z \in x \land \varphi))$;
- **ZF6** Power Sets: $\forall x \forall y (y \in \mathcal{P}(x) \leftrightarrow y \subseteq x)$;
- **ZF7** Infinity: $\exists x (\emptyset \in x \land \forall y (y \in x \rightarrow y^+ \in x))$, where y^+ is defined to be $\bigcup P(y, P(y, y))$;
- **ZF8** Replacement Scheme: Let $\varphi \in \text{Form}(\mathcal{L})$ and $x, y, w_1, ..., w_k, A \in \text{Free}(\varphi)$. Then $\forall A \forall w_1 \cdots \forall w_k (\forall x (x \in A \rightarrow \exists! y \varphi) \rightarrow \exists B \forall y (y \in B \leftrightarrow \exists x (x \in A \rightarrow \varphi)))$, where $\exists! y \varphi$ is defined to be $(\exists y \varphi \land \forall z \forall y ((\varphi \land \varphi[z/y]) \rightarrow y \doteq z))$.
- **ZF9** Foundation: $\forall x (\neg x = \varnothing \rightarrow \exists y (y \in x \land \neg \exists z (z \in y \land z \in x)));$
- **AC** Choice: $\forall x (\neg \varnothing \in x \to \exists f ((f: x \to \bigcup x) \land \forall y (y \in x \to f(y) \in y)))$, where $(f: x \to \bigcup x)$ suggests that f is a map from x to $\bigcup x$.

The predicate \subseteq is introduced for convenience. It satisfies $\forall x \forall y (x \subseteq y \leftrightarrow \forall z (z \in x \rightarrow z \in y))$.

The constant ω is the smallest inductive set, whose existence and uniqueness follows from the Axioms of Infinity, Comprehension Scheme, and Extensionality.

Question 1

- $-\alpha$
- (a) Let R be a relation (i.e. R is a set of ordered pairs). Prove that Dom(R), which we define to be $\{x: \exists y \ \langle x,y \rangle \in R\}$, is a set.
- (b) Let X, Y be sets. Prove there exists a set whose elements are the surjections from X to Y.
- (c) Let *X* be a set. Prove that there is a set consisting precisely of all strict total orders on *X*.
- *Proof.* (a) Note that the ordered pair $\langle x,y\rangle$ is defined to be $\{\{x\},\{x,y\}\}=P(P(x,x),P(x,y))$. Since $R\subseteq \mathcal{P}(\mathcal{P}(X\cup Y))$, $\bigcup\bigcup R\subseteq X\cup Y$. Therefore we can use the Axiom Scheme of Comprehension and define the domain to be the set

$$\mathrm{Dom}(R) := \left\{ x \in \bigcup \bigcup R : \exists y \ \langle x, y \rangle \in R \right\}$$

(b) If $f: X \to Y$ is a map, then $f \subseteq \mathcal{P}(\mathcal{P}(X \cup Y))$. Hence $f \in \mathcal{P}(\mathcal{P}(\mathcal{P}(X \cup Y)))$. We know that it is a first-order property that $f: X \to Y$ is a surjection:

$$\varphi := (\forall x \forall y \, (\langle x,y \rangle \in f \to (x \in X \land y \in Y)) \land \forall x \, (x \in X \to \exists ! y \, \langle x,y \rangle \in f) \land \forall y \, (y \in Y \to \exists x \, \langle x,y \rangle \in f))$$

Therefore we can use the Axiom Scheme of Comprehension and define

$$S := \{ f \in \mathcal{P}(\mathcal{P}(\mathcal{P}(X \cup Y))) : \varphi \}$$

S is the set of all surjections $f: X \to Y$.

(c) Let R be a relation on X, i.e. $R \in \mathcal{P}(\mathcal{P}(\mathcal{P}(X)))$. We know that being a strict total order is a first-order property:

$$\begin{array}{ll} \varphi_1: & \forall x \forall y ((\langle x,y \rangle \in R \land \neg \langle y,x \rangle \in R \land \neg x \doteq y) \\ & \lor (\neg \langle x,y \rangle \in R \land \langle y,x \rangle \in R \land \neg x \doteq y) \\ & \lor (\neg \langle x,y \rangle \in R \land \neg \langle y,x \rangle \in R \land x \doteq y)) & [\text{Trichotomy}] \\ \varphi_2: & \forall x \forall y \forall z (\langle x,y \rangle \in R \rightarrow (\langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R)) & [\text{Transitivity}] \end{array}$$

Therefore we can use the Axiom Scheme of Comprehension and define

$$S := \{ R \in \mathcal{P}(\mathcal{P}(\mathcal{P}(X))) : \varphi_1 \wedge \varphi_2 \}$$

S is the set of all strict total orders on X.

Question 2

 α

Prove, using induction and the fact that each $n \in \omega$ is transitive, that $n \in n$ is false for every $n \in \omega$.

[Do not use the Axiom of Foundation.]

Proof. Base case: Since $\emptyset \notin \emptyset$, we have $0 \notin 0$.

Induction case: Suppose that $n \notin n$. By definition, $n^+ := n \cup \{n\}$. Assume that $n^+ \in n^+$. Then $n \cup \{n\} \in n \cup \{n\}$. So $n \cup \{n\} \in n$ or $n \cup \{n\} \stackrel{.}{=} n$.

If $n \cup \{n\} \doteq n$, then $\{n\} \subseteq n$. Then $n \in n$, contradicting the induction hypothesis.

If $n \cup \{n\} \in n$, since n is transitive, then $n \cup \{n\} \subseteq n$. Therefore $\{n\} \subseteq n$. Then $n \in n$, contradicting the induction hypothesis.

Hence $n^+ \notin n^+$. By Theorem 4.6, $n \notin n$ for all $n \in \omega$.

Question 3

 α -

Prove that the function sending n to n! exists (as a set).

[Hint: Use Recursion in the form of Theorem 5.1 with $X = \omega \times \omega$.]

Proof. Let $g: \omega \times \omega \to \omega \times \omega$ given by $\langle m, n \rangle \mapsto \langle m \cdot n^+, n^+ \rangle$. The map g is well-defined. Now fix $\langle 1, 0 \rangle \in \omega$. By Theorem 5.1 there exists a map $f: \omega \to \omega \times \omega$ such that $f(0) \doteq \langle 1, 0 \rangle$ and $f(n^+) \doteq g(f(n))$.

By the Axiom Scheme of Comprehension, there exists a set

 $\tilde{f} := \{\langle x,y \rangle \in \omega \times \omega: \ \forall z \ \langle x, \langle y,z \rangle \rangle \in f\}$ $\blacksquare \exists z \text{ instead. You only have } \langle x, \langle y,x \rangle \rangle \in f,$

We claim that \tilde{f} is a map from ω to ω such that every $n \in \omega$ is sent to $n! \in \omega$. not $\langle x, \langle y, z \rangle \rangle \in f$ for arbitrary z

Question 4

α

Prove that multiplication on ω is commutative by proving the following statements for $n,m\in\omega$ by induction. You may use the other arithmetic properties established in lectures; or prove that $m*n=n\cdot m$ satisfies the same recursion as $m\cdot n$.

- (i) $0 \cdot n = 0$
- (ii) $m^+ \cdot n = m \cdot n + n$
- (iii) $m \cdot n = n \cdot m$

Proof. We use the following properties of the multiplication $\cdot : \omega \times \omega \to \omega$.

- 1. $n \cdot 0 \doteq 0$ for all $n \in \omega$;
- 2. $n \cdot m^+ \doteq n \cdot m + n$ for all $n, m \in \omega$;
- 3. Any map $\omega \times \omega \to \omega$ with the above properties is unique.

In addition, we assume all arithmetic of the addition $+:\omega\times\omega\to\omega$. only if you view in the alternative way (proving

(i) We use induction on n.

that $\langle m, n \rangle \to m \cdot n$ and $\langle m, n \rangle \to n \cdot m$ are the same map)

Base case: $0 \cdot 0 \doteq 0$.

Induction case: Suppose that $0 \cdot n \doteq 0$. Then $0 \cdot n^+ \doteq 0 \cdot n + 0 \doteq 0 + 0 \doteq 0$.

(ii) We use induction on n.

Base case: $m^+ \cdot 0 \doteq 0 \doteq 0 + 0 \doteq m \cdot 0 + 0$.

Induction case: Suppose that $m^+ \cdot n \doteq m \cdot n + n$. Then

$$m^+ \cdot n^+ \doteq m^+ \cdot n + m^+ \doteq (m \cdot n + n) + (m+1) \doteq (m \cdot n + m) + (n+1) \doteq m \cdot n^+ + n^+$$

(iii) We use induction on m.

Base case: $0 \cdot n \doteq 0$.

Induction case: Suppose that $m \cdot n \doteq n \cdot m$. Then

$$m^+ \cdot n \doteq m \cdot n + n \doteq n \cdot m + n \doteq n \cdot m^+$$

Ouestion 5

Write $1=0^+, 2=1^+$. Define $n\in\omega$ to be *even* if it is of the form $2\cdot k$ for some $k\in\omega$ and *odd* if it is of the form $2\cdot k+1$ for some $h \in \omega$. Prove that

- (i) every element of ω is either even or odd;
- (ii) no element of ω is both even and odd.

Proof. (i) We use induction on n to prove that every $n \in \omega$ is either even or odd.

Base case: $0 \in \omega$ is even. This is because $0 \doteq 2 \cdot 0$.

Induction case: Suppose that $n \in \omega$ is either even or odd.

If n is even, then there exists $k \in \omega$ such that $n \doteq 2 \cdot k$. Then $n^+ \doteq (n+0)^+ \doteq n + 0^+ \doteq n + 1 \doteq 2 \cdot k + 1$ is odd.

If n is odd, then there exists $k \in \omega$ such that $n \doteq 2 \cdot k + 1$. Then

$$n^+ \doteq n + 1 \doteq (2 \cdot k + 1) + 1 \doteq 2 \cdot k + (1 + 1) \doteq 2 \cdot k + (1 + 0^+) \doteq 2 \cdot k + (1 + 0)^+ \doteq 2 \cdot k + 1^+ \doteq 2 \cdot k + 2 \doteq 2 \cdot k^+$$

Hence n^+ is either even or odd.

(ii) Suppose for contradication that $n \in \omega$ is both even and odd. There exists $k, h \in \omega$ such that $n = 2 \cdot k = 2 \cdot h + 1$.

First we use induction on m to prove that $\varphi_m := (k \in m \to \exists \ell (\ell \in \omega \land k + \ell \doteq m))$.

No need for this. $m+=m \cup \{m\}$, so $k \in m+$ implies Base case: The formula φ_0 holds vacuously. \mathbf{k} either $\mathbf{k} = \mathbf{m}$ or $\mathbf{k} \in \mathbf{m}$.

Induction case: Suppose that φ_m holds. If $m \in k$, then $k \notin m^+$ because \in is a strict total order on ω . φ_{m^+} holds vacuously. If $m \doteq k$, then $m^+ \doteq k^+$. We have $k+1 \doteq k^+ \doteq m^+$, so φ_{m^+} holds. If $k \in m$, then by induction hypothesis there exists $\ell \in \omega$ such that $k + \ell \doteq m$. Hence $k + (\ell + 1) \doteq (k + \ell) + 1 \doteq m + 1 \doteq m^+$. So φ_{m^+} holds.

Next, we consider the three cases.

If $k \doteq h$, then $2 \cdot k \doteq 2 \cdot h + 1$ implies that $0 \doteq 1$, which is impossible. Too quick here! To cancel, you need to mention/prove that + is If $k \in h$, then there exists $\ell \in \omega$ such that $k + \ell = h$. Therefore injective on the second operand

$$2 \cdot k \doteq 2 \cdot h + 1 \implies 2 \cdot k \doteq 2 \cdot (k + \ell) + 1 \implies 2 \cdot k \doteq 2 \cdot k + 2 \cdot \ell + 1 \implies 0 \doteq 2 \cdot \ell + 1 \implies 0 \doteq (2 \cdot \ell)^+$$

▶ Distribution — this need another induction if you do not state it priorly

But $0 = \emptyset$ is not the successor of any set. Contradication.

If $h \in k$, then there exists $\ell \in \omega$ such that $h + \ell = k$. Therefore

$$2 \cdot k \doteq 2 \cdot h + 1 \implies 2 \cdot \ell \doteq 1$$

We shall prove that this is impossible by induction on ℓ . Consider the formula $\psi_{\ell} := (\ell \doteq 0 \lor 1 \in 2 \cdot \ell)$.

A much simpler way for this part, directly use induction on n:

- For n = 0: $2 \cdot k + 1 = (2 \cdot k) + \neq 0$, so 0 cannot be odd
- Assume n, for n+: suppose $n+2 \cdot k=2 \cdot h+1$, then $k \neq 0$, so k=m+, and $n=2 \cdot m+1=2 \cdot h$, contradicting inductive hypothesis

The base case ψ_0 is trivial. Suppose that ψ_ℓ holds. If $\ell \doteq 0$, then $1 \in 2 \doteq 2 \cdot 1 \doteq 2 \cdot \ell^+$. So $\psi_{\ell+}$ holds. If $0 \in \ell$, then by induction hypothesis, $1 \in 2 \cdot \ell$. But $2 \cdot \ell \in 2 \cdot \ell + 2 = 2 \cdot \ell^+$. So $1 \in 2 \cdot \ell^+$, and ψ_{ℓ^+} holds.

Question 6 α-

A *Peano system* is a triple (A, s, a_0) in which A is a set, $a_0 \in A$, and $s: A \to A$ is a function which is (a) one-toone, (b) does not include a_0 in its range, and (c) satisfies the Principle of Induction: that is, if $S \subseteq A$, $a_0 \in S$ and $\forall a(a \in S \rightarrow s(a) \in S)$, then S = A.

- (i) Prove that $(\omega, x \mapsto x^+, 0)$ is a Peano system.
- (ii) Suppose (A, s, a_0) is a Peano system. Prove that there exists an isomorphism from $(\omega, +, 0)$ to (A, s, a_0) , that is, there is a bijection $f: \omega \to A$ such that $f(0) = a_0$ and, for all $n \in \omega$, $f(n^+) = s(f(n))$.

[Hence, up to isomorphism, $(\omega, +, 0)$ is the unique Peano system.]

[*Hint: Define f by recursion and verify the required properties.*]

Proof. (i) Let $s: \omega \to \omega$ defined by $x \mapsto x^+$.

First, by Theorem 4.11, s is injective.

Second, it is clear that $n \notin 0 = \emptyset$ for all $n \in \omega$. Hence $0 \notin \text{im}(s)$.

Third, suppose that $S \subseteq \omega$, $0 = \emptyset \in S$, and $\forall a (a \in S \to a^+ \in S)$. The by Axiom of Infinity S is an inductive set. You do not need Axiom of Hence $\omega \subseteq S$. But $S \subseteq \omega$. So $S \doteq \omega$. Infinity here

(ii) By Theorem 5.1 there exists a map $f:\omega\to A$ such that $f(0)\doteq a_0$ and $f(n^+)\doteq s(f(n))$. We shall prove that f is a bijection.

f is surjective: Consider $S := \operatorname{im}(f) := \{ y \in A : \exists n(n \in \omega \land y = f(n)) \}$. Since $a_0 = f(0), a_0 \in S$. For $a \in S$, there exists $n \in \omega$ such that a = f(n). Then $s(a) = s(f(n)) = f(n^+) \in S$. Hence $\forall a (a \in S \to s(a) \in S)$. As (A, s, a_0) is a Peano system, we conclude that S = A. Hence f is surjective.

f is injective: Suppose that it is not. There exists $n, m \in \omega$ such that $n \neq m$ and $f(n) \doteq f(m)$. Without loss of generality suppose that $n \in m$. Then there exists $\ell \in \omega$ such that $n + \ell \doteq m$. Then $f(n + \ell) \doteq f(n)$.

(a) We prove by induction on k that f(n+k) = f(m+k) for all $k \in \omega$:

Base case: $f(n+0) \doteq f(n) \doteq f(m) \doteq f(m+0)$.

Induction case: Suppose that $f(n+k) \doteq f(m+k)$. Then $f(n+k^+) \doteq f((n+k)^+) \doteq s(f(n+k)) \doteq s(f(n+k))$ $s(f(m+k)) \doteq f((m+k)^+) \doteq f(m+k^+).$ This is not by inductive hypothesis here, but

(b) We prove by induction on k that $f(n+k \cdot \ell) \doteq f(n)$ for all $k \in \omega$: rather $f(m+k \cdot l) = f(n+k \cdot l)$ from (a)! So you should write instead: $f(n + k \cdot l + l) = f(m + k \cdot l) = f(n + k \cdot l) = f(n)$ Base case: $f(n+0 \cdot \ell) \doteq f(n+0) \doteq f(n)$.

Induction case: Suppose that $f(n+k\cdot\ell)\doteq f(n)$. Then $f(n+k^+\cdot\ell)\doteq f(n+k\cdot\ell+\ell)\doteq f(n+\ell)\doteq f(n)$.

(c) We prove by induction on a that $\varphi_a := ((a \in \omega \land n \in a) \to \exists k (k \in \omega \land n + k \cdot \ell \leqslant a \land a \in n + k^+ \cdot \ell)).$

Base case: φ_0 is true vacuously.

Again, no need for this. $a+=a \cup \{a\}$, so $n \in a+$

Induction case: Suppose that φ_a is true. If $a \in n$, then $n \notin a^+$, so φ_{a^+} holds vacuously. If $a \doteq n$, then $n+0 \cdot \ell \leqslant n \doteq a$ and $a \doteq n \in n+1 \cdot \ell$. If $n \in a$, by induction hypothesis there exists $k \in \omega$ such that $k \in \omega \wedge n + k \cdot \ell \leq a$ and $a \in n + k^+ \cdot \ell$. Let $b \in \omega$ such that $a + b \doteq n + k^+ \cdot \ell$. If $b \doteq 1$, then $a^+ \doteq n + k^+ \cdot \ell$ and $a^+ \in n + k^{++} \cdot \ell$; if $1 \in b$, then $a^+ \in n + k^+ \cdot \ell$ and $n + k \cdot \ell \leqslant a^+$.

- (d) Now, for $a \in \omega$ such that $n \in a$, there exists $k \in \omega$ such that $n + k \cdot \ell \leq a < n + k^+ \cdot \ell$. Let $b \in \omega$ such that $a \doteq n + k \cdot \ell + b$. In particular, since $a \in n + k^+ \cdot \ell$, we have $b \in \ell$. Then $f(a) \doteq f(n + k \cdot \ell + b) \doteq f(n + b)$. We deduce that $\operatorname{im}(f)$ has at most m-1 distinct elements: $f(0), ..., f(m-1) = f(n+\ell-1)$. But since f is surjective, A is a set with finitely many distinct elements. You have not shown this! Same proof as (a) though, but you need to mention it
- (e) Since A is finite, by Theorem 9.2, $s:A\to A$ is injective implies that s is surjective, which contradicts that $a_0 \notin \operatorname{im}(s)$.

We conclude that f is bijective.

Again, a much simpler way for this part, directly use induction on n to prove that for all $m \ge n$, $f(m) \ne f(n)$:

- For n = 0: for m > 0, m = k+, so $f(m) = s(f(k)) \neq a0 = f(0)$
- Assume n, for n+: for m > n+, m = k+ for some k > n. If s(f(k)) = f(m) = f(n+) = s(f(n)), then s(k) = f(n), contradicting inductive hypothesis

Question 7

α

Let $X=X_0$ be a set. By the Axiom of Unions, the sets $X_1=\bigcup X, X_2=\bigcup X_1,\ldots$ are sets. The *transitive closure* of X is defined to be $T(X)=\bigcup_{n=0}^{\infty}X_n=\bigcup \{X_0,X_1,\ldots\}$. Prove that

- (i) T(X) is a set
- (ii) T(X) is transitive
- (iii) $X \subseteq T(X)$
- (iv) If $X \subseteq Y$ and Y is transitive then $T(X) \subseteq Y$
- (v) If X is transitive then T(X) = X.

Proof. (i) Let $\varphi(x,y):=y\doteq\bigcup x$. Then $\forall x\exists!y\varphi(x,y)$. By Theorem 7.2 (which is based on the Axiom Scheme of Replacement), there exists a set Y and a function $f:\omega\to Y$ such that $f(0)\doteq X_0,\, f(1)\doteq\bigcup X_0\doteq X_1,...,\, f(n)\doteq X_n$ for all $n\in\omega$. Then by Axiom Scheme of Comprehension,

$$Z := \{ y \in Y : \exists n (n \in \omega \land f(n) \doteq y) \}$$

is a set with elements $X_0, X_1, X_2, ...$

We can define T(X) to be $\bigcup Z$. In particular, we have $\forall x(x \in T(X) \leftrightarrow \exists n(n \in \omega \land x \in X_n))$.

- (ii) For $x \in T(X)$, there exists $X_i \in Z$ such that $x \in X_i$. Then $x \subseteq \bigcup X_i = X_{i+1}$. But $X_{i+1} \in Z$ implies that $X_{i+1} \subseteq T(X)$. Hence $X \subseteq T(X)$. Hence $X \subseteq T(X)$ is transitive.
- (iii) $X_0 \in \mathbb{Z}$ implies that $X_0 \subseteq T(X)$.
- (iv) We use induction on n to prove that $X_n \subseteq Y$ for all $n \in \omega$. Base case $X = X_0 \subseteq Y$. Induction case: Suppose that $X_n \subseteq Y$. For $x \in X_{n^+} = \bigcup X_n$, there exists $y \in X_n$ such that $x \in y$. By induction hypothesis $y \in Y$. Since Y is transitive, $x \in y \in Y$ implies that $x \in Y$. Hence $X_{n^+} \subseteq Y$.

We deduce that $T(X) = \bigcup_{n \in \omega} X_n \subseteq Y$.

(v) Let Y=X in (iv) we obtain that $T(X)\subseteq X$. But by (iii) we have $X\subseteq T(X)$. Hence $T(X)\doteq X$.

Question 8

α

A set X is called *hereditarily finite* if its transitive closure T(X) is a finite set.

(i) Prove that the following sets are hereditarily finite

$$\varnothing$$
, $\{\varnothing\}$, $\{\varnothing,\{\varnothing\}\}$, $\{\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}\}$

(ii) Prove that a subset of a hereditarily finite set is hereditarily finite, and an element of a hereditarily finite set is hereditarily finite.

[You may assume: a subset of a finite set is finite]

(iii) Let **H** be the class of hereditarily finite sets. It turns out that **H** is in fact a set. Prove that the Empty Set Axiom, the Axioms of Extensionality, Pairs, Unions and the Comprehension Scheme are all true in **H**.

[For example, the Axiom of Pairs is true in **H** provided that, if a, b are hereditarily finite sets, there is a hereditarily finite set c whose only hereditarily finite elements are a and b. This will be true if indeed $\{a, b\}$ is hereditarily finite.]

- (iv) Is $\omega \in \mathbf{H}$?
- (v) Show that the Axiom of Infinity is not a consequence (in first order predicate logic) of the Axioms of Empty Set, Extensionality, Pairs, Union and Comprehension Scheme.
- (vi) A set is called *hereditarily countable* if T(X) is a countable set (i.e. is finite or is in bijection with ω). Let \mathbf{K} be the class of hereditarily countable sets. In fact \mathbf{K} is a set. Now $\omega \in \mathbf{K}$. Which of the axioms Extensionality, Empty Set, Pairs, Unions, Comprehension Scheme, Infinity, Power Set hold in \mathbf{K} ?

[You may use that a countable union of countable sets is countable, though this does not follow from the axioms so far given.]

(vii) Is it possible to prove the Power Set Axiom from the above axioms (now including Axiom of Infinity)?

Proof. (i) In Sheet 1 Question 1.(i) Line 13, we have proven that $\bigcup \varnothing \doteq \varnothing$. That is, $\bigcup 0 \doteq 0$. We know that ω is transitive. Then $\bigcup n^+ \doteq n$ for all $n \in \omega$.

This does not help. You used instead that each $n \in \omega$ is transitive.

Let $X_0 := \emptyset = 0$ and $X_{n^+} := \bigcup X_n$ for each $n \in \omega$. Then $X_n \doteq 0$ for all $n \in \omega$. In particular $T(X) = \bigcup_{n \in \omega} X_n \doteq 0$. Since 0 is finite, we conclude that 0 is hereditarily finite.

Let $X_0 := \{\emptyset\} = 1$. and $X_{n^+} := \bigcup X_n$ for each $n \in \omega$. Then $X_n \doteq 0$ for all $n \geqslant 1$. In particular $T(X) = \bigcup_{n \in \omega} X_n \doteq 1$. Since 1 is finite, we conclude that 1 is hereditarily finite.

Let $X_0 := \{\varnothing, \{\varnothing\}\} = 2$. and $X_{n^+} := \bigcup X_n$ for each $n \in \omega$. Then $X_1 \doteq 1$ and $X_n \doteq 0$ for all $n \geqslant 2$. In particular $T(X) = \bigcup_{n \in \omega} X_n \doteq 2$. Since 2 is finite, we conclude that 2 is hereditarily finite.

Let $X_0 := \{\{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}\} = \{1, 2\}$. and $X_{n^+} := \bigcup X_n$ for each $n \in \omega$. Then $X_1 = \bigcup \{1, 2\} = 2$, $X_2 \doteq \bigcup 2 \doteq 1$ and $X_n \doteq 0$ for all $n \geqslant 3$. In particular $T(X) = \bigcup_{n \in \omega} X_n \doteq \{0, 1, 2\} = 3$. Since 3 is finite, we conclude that $\{1, 2\}$ is hereditarily finite.

(ii) We state a lemma:

$$\forall x \forall y (x \subseteq y \to \bigcup x \subseteq \bigcup y)$$

The proof is trivial.

Let X be hereditarily finite and $Y \subseteq X$. Let $X_0 := X$ and $X_{n^+} := \bigcup X_n$ for all $n \in \omega$. Let $Y_0 := Y$ and $Y_{n^+} := \bigcup Y_n$ for all $n \in \omega$. Inductively we have $Y_n \subseteq X_n$ for all $n \in \omega$. Hence $T(Y) \doteq \bigcup_{n \in \omega} Y_n \subseteq \bigcup_{n \in \omega} X_n \doteq T(X)$. Since T(X) is finite, T(Y) is finite. Hence $Y \in \mathbf{H}$.

For $x \in X$, $x \subseteq X_1 = \bigcup X$. Similar to above we have $T(x) \subseteq T(\bigcup X)$. But $T(\bigcup X) \cup X \doteq T(X)$. Hence $T(\bigcup X)$ is finite and T(x) is finite. $x \in \mathbf{H}$.

(iii) $\models_{\mathbf{H}} ZF1$: Trivial.

Note: when a formula φ is true in a model H without needing premises, we can indeed write $\models H \varphi$, but more often we actually directly write $H \models \varphi$. :)

 $\vDash_{\mathbf{H}}$ ZF2: In part (i) We have proven that $\varnothing \in \mathbf{H}$.

 $\vDash_{\mathbf{H}}$ ZF3: Suppose that $x,y\in\mathbf{H}$. It is clear that $T(x)\cup T(y)\doteq T(x\cup y)$. Since $x\cup y=\bigcup\{x,y\}$, $T(\{x,y\})\doteq T(x\cup y)\cup\{x,y\}$. As T(x) and T(y) are finite, we deduce that $T(\{x,y\})$ is finite. Hence $\{x,y\}\in\mathbf{H}$.

 $\vDash_{\mathbf{H}}$ ZF4: Suppose that $x \in \mathbf{H}$. Then T(x) is finite. Note that $T(x) \doteq T(\bigcup x) \cup x$. So $T(\bigcup x) \subseteq T(x)$ is finite. Hence $\bigcup x \in \mathbf{H}$.

 $\vDash_{\mathbf{H}}$ ZF5: Suppose that $x \in \mathbf{H}$, $\varphi \in \text{Form}(\mathcal{L})$ and $z, w_1, ..., w_k \in \text{Free}(\varphi)$. Let $y := \{z \in x : \varphi\}$. Then $y \subseteq x$. By part (ii) we have $y \in \mathbf{H}$.

- (iv) $\omega \subseteq T(\omega)$. If $\omega \in \mathbf{H}$, then $T(\omega)$ is finite. But ω is not finite, contradication.
- (v) Suppose that $\{ZF1, ZF2, ZF3, ZF4, ZF5\} \vdash ZF7$. Then by Gödel's Completeness Theorem $\{ZF1, ZF2, ZF3, ZF4, ZF5\} \vdash ZF7$. In part (iii) we have proven that $\models_{\mathbf{H}} \{ZF1, ZF2, ZF3, ZF4, ZF5\}$. But since $\omega \notin \mathbf{H}$, we have $\not\models_{\mathbf{H}} ZF7$. Hence $\{ZF1, ZF2, ZF3, ZF4, ZF5\} \not\models ZF7$. Contradication.
- (vi) An immediate corollary of Theorem 9.10 is that a subset of a countable set is countable. We assume the Axiom of Choice, which implies that a countable union of countable sets is countable.

 $\models_{\mathbf{K}} \mathbf{ZF1}$: Trivial.

 $\vDash_{\mathbf{K}}$ ZF2: In part (i) We have proven that $\varnothing \in \mathbf{H}$. Trivially $\mathbf{H} \subseteq \mathbf{K}$. Then $\varnothing \in \mathbf{K}$.

 $\vdash_{\mathbf{K}}$ ZF3: Suppose that $x,y \in \mathbf{K}$. $T(\{x,y\}) \doteq T(x \cup y) \cup \{x,y\}$. As T(x) and T(y) are countable, we deduce that $T(\{x,y\})$ is countable. Hence $\{x,y\} \in \mathbf{K}$.

 $\vDash_{\mathbf{K}}$ ZF4: Suppose that $x \in \mathbf{K}$. Then T(x) is countable. Note that $T(x) \doteq T(\bigcup x) \cup x$. So $T(\bigcup x) \subseteq T(x)$ is countable. Hence $\bigcup x \in \mathbf{K}$.

 $\vDash_{\mathbf{K}}$ ZF5: Suppose that $x \in \mathbf{K}$, $\varphi \in \text{Form}(\mathcal{L})$ and $z, w_1, ..., w_k \in \text{Free}(\varphi)$. Let $y := \{z \in x : \varphi\}$. Then $y \subseteq x$. As in part (ii) we have $T(y) \subseteq T(x)$. Since T(x) is countable, T(y) is countable. Hence we have $y \in \mathbf{K}$.

 $\vDash_{\mathbf{K}} \mathsf{ZF7}$: ω is countable and transitive. Then $T(\omega) \doteq \omega$ is countable. Hence $\omega \in \mathbf{K}$.

otag K ZF6: By Cantor's Theorem, $\omega \prec \mathcal{P}(\omega)$. In particular $\mathcal{P}(\omega)$ is uncountable. As $\mathcal{P}(\omega) \subseteq T(\mathcal{P}(\omega))$, $T(\mathcal{P}(\omega))$ is uncountable. Then $\mathcal{P}(\omega) \notin \mathbf{K}$ whereas $\omega \in \mathbf{K}$.

(vii) Suppose that $\{ZF1, ZF2, ZF3, ZF4, ZF5, ZF7\} \vdash ZF6$. Then by Gödel's Completeness Theorem $\{ZF1, ZF2, ZF3, ZF4, ZF5, ZF7\} \vdash ZF6$. In part (vi) we have proven that $\models_{\mathbf{K}} \{ZF1, ZF2, ZF3, ZF4, ZF5, ZF7\}$ and $\not\models_{\mathbf{K}} ZF6$. Hence $\{ZF1, ZF2, ZF3, ZF4, ZF5, ZF7\} \not\models ZF6$. Contradication.