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We use the first-order language L := {€,C; P,|J, P; @, w}, where € and C are binary predicates, P is a binary function, | J and
P are unary functions, and @ and w are constants.

The equality symbol = is used in £ which indicates that two terms have the same value under any model and assignment. The
equality symbol = is used in metalanguage which indicates that two strings are equal.

The ZFC axioms we shall use in this sheet are listed below:

ZF1 Extensionality: VaVy(Vz(z € x <> z € y) &> & = y);

ZF2 Empty Set: Vx —x € &;

ZF3 Pairs: VaVyVz(z € P(z,y) <> (x =2V y = z));

ZF4 Unions: VaVy(y € Jz + 3z(y € z A z € 2));

ZF5 Comprehension Scheme: Let p € Form(L) and z,w, ..., wy, € Free(y). Then VaVw; - - -VwrIyVz(z € y <> (z € z A p));
ZF6 Power Sets: VaVy(y € P(z) <y C z);

ZF7 Infinity: 3x(@ € x AVy(y €  — y* € x)), where y* is defined to be |J P(y, P(y,vy));

ZF8 Replacement Scheme: Let ¢ € Form(L) and x,y, w1, ...,wg, A € Free(y). Then VAVw; - - -Vw,(Vz(x € A — Fly ) —

dBVy(y € B <» Jz(z € A — ¢))), where 3ly ¢ is defined to be (Fy o AV2Vy((¢ A plz/y]) = y = 2)).
¥ This is A!
ZF9 Foundation: Vz(—~x =@ — Jy(ly € x A—3z(z €y A z € 1)));

AC Choice: V(- e x—3f(f: x> Uz) AVy(ly € x — f(y) € y))), where (f : z — | x) suggests that f is a map from x
toJuz.

The predicate C is introduced for convenience. It satisfies VzVy(z C y <> Vz(z € x — z € y)).

The constant w is the smallest inductive set, whose existence and uniqueness follows from the Axioms of Infinity, Comprehension
Scheme, and Extensionality.

Question 1 o

(a) Let Rbe arelation (i.e. Ris a set of ordered pairs). Prove that Dom(R), which we define tobe {z : Jy (x,y) € R},
is a set.

(b) Let X,Y be sets. Prove there exists a set whose elements are the surjections from X to Y.

(c) Let X be a set. Prove that there is a set consisting precisely of all strict total orders on X.

Proof. (a) Note that the ordered pair (x,y) is defined to be {{z}, {z,y}} = P(P(x,z), P(x,y)). Since R C P(P(X UY)),
UUR C X UY. Therefore we can use the Axiom Scheme of Comprehension and define the domain to be the
set

Dom(R) := {a: € UUR: Jy (z,y) € R}J

(b) If f : X — Y isamap, then f C P(P(X UY)). Hence f € P(P(P(X UY))). We know that it is a first-order
property that f : X — Y is a surjection:

p:i=WVaVy((z,y)ef 2 (z e X AyeY)AVz(z e X = Ay (z,y) € [YAVy(y €Y — 3z (x,y) € f))
Therefore we can use the Axiom Scheme of Comprehension and define

={f e P(P(P(XUY))): ¢}

4

(c) Let Rbe arelationon X, i.e. R € P(P(P(X))). We know that being a strict total order is a first-order property:

S is the set of all surjections f : X — Y.

p1: Vavy(((z,y) € RA—(y,x) € RA~z =)

V(= {z,y) € RA(y,z) € RA—x =y)

V(= (z,y) € RA=(y,z) € RNz =y)) [Trichotomy]
w21 VaVyVz((z,y) € R — ({y,2) € R — (z,z) € R)) [Transitivity|



Therefore we can use the Axiom Scheme of Comprehension and define

S:={R e P(P(P(X))): ¢1 Apa}

4

S is the set of all strict total orders on X. O

Question 2 o
Prove, using induction and the fact that each n € w is transitive, that n € n is false for every n € w.

[Do not use the Axiom of Foundation.]

Proof. Base case: Since @ ¢ &, we have 0 ¢ 0.

Induction case: Suppose that n ¢ n. By definition, n* := nU{n}. Assume that n* € n*. ThennU {n} € nU{n}. So
nU{n}enornU{n}=n.

If nU {n} = n, then {n} C n. Then n € n, contradicting the induction hypothesis.

If nU {n} € n, since n is transitive, then n U {n} C n. Therefore {n} C n. Then n € n, contradicting the induction

hypothesis.
Hence n™ ¢ n*. By Theorem 4.6, n ¢ n foralln € w. ‘/ O
Question 3 o-

Prove that the function sending n to n! exists (as a set).

[Hint: Use Recursion in the form of Theorem 5.1 with X = w X w.]

Proof. Letg:w X w — w x w given by (m, n) — (m -n*,n™). The map g is well-defined. Now fix (1,0) € w. By Theorem 5.1
there exists amap f : w — w x w such that f(0) = (1,0) and f(n™*) = g(f(n)).

By the Axiom Scheme of Comprehension, there exists a set
F={(my) ewxw: Vz (z,(y,2)) € f}

~ ¥ 32 instead. You only have <x, <y, x)) € f,
We claim that f is a map from w to w such that every n € w is sent to n! € w. not (x, {y, z)) € f for arbitrary z O

Question 4 ol

Prove that multiplication on w is commutative by proving the following statements for n,m € w by induction. You
may use the other arithmetic properties established in lectures; or prove that mx*n = n-m satisfies the same recursion
asm - n.

) 0-n=0
(i) m™ -n=m-n+n

(i) m-n=n-m

Proof. We use the following properties of the multiplication - : w X w — w.
1.n-0=0foralln € w;
2. n-m*t=n-m+nforalln,m € w;

3. Any map w x w — w with the above properties is unique.
. . . . ¥ To prove (i) - (iii) you do not actually need this. You need this
In addition, we assume all arithmetic of the addition + : w x w — w. oy if you view in the alternative way (proving
(i) We use induction on . that {m, n) — m - nand {m, n) — n - m are the
same map)
Base case: 0-0 = 0.



Induction case: Suppose that 0-n =0. Then0-n* =0-n+0=0+0 = O.‘/
(i) We use induction on n.
Basecase:m™-0=0=0+0=m-0+0.

Induction case: Suppose that m™* - n = m - n + n. Then

m+~n+im*-nﬂ—m*i(m~n+n)+(m+1)i(m-n+m)+(n+l)im~n++nv

(iii) We use induction on m.
Base case: 0-n = 0.
Induction case: Suppose that m - n = n - m. Then

+ +

m ~nim~n+nin-m+nin~ml O
Question 5 o~

Write 1 = 07,2 = 1*. Define n € w to be even if it is of the form 2 - k for some k& € w and odd if it is of the form 2 - h + 1
for some h € w. Prove that

(i) every element of w is either even or odd;

(ii) no element of w is both even and odd.

Proof. (i) We use induction on n to prove that every n € w is either even or odd.
Base case: 0 € w is even. This is because 0 = 2 - 0.
Induction case: Suppose that n € w is either even or odd.
If n is even, then there exists k € wsuch thatn =2 k. Thenn™ = (n+0)" =n+0" =n+1=2-k+ 1isodd.
If n is odd, then there exists k € w such thatn = 2 - k£ + 1. Then

ntEn4+1=2k+D)+1=2k+(1+1)=2-k+(1+0)=2-k+(1+0)"T =2 k+1" =2 k+2=2-k

is even.
Hence n is either even or odd.

(ii) Suppose for contradication that n € w is both even and odd. There exists k,h € w suchthatn =2-k=2-h+1.
First we use induction on m to prove that ¢, := (k€ m — H({ € w Ak + £ =m)).

Base case: The formula ¢, holds vacuously. ~ No need for this. m+=m U {m}, so k € m+ implies
x eitherk=mork Em.
Induction case: Suppose that ¢, holds. If m € k, then k ¢ m™ because € is a strict total order on w. ¢,,+ holds

vacuously. If m = k, then m®™ = k*. Wehave k + 1 = kT = m™, s0 ¢,,,+ holds. If & € m, then by induction
hypothesis there exists £ € w such that k +¢ = m. Hence k+ ({+1) = (k+4)+1=m+1=m" . S0 o+ holds.‘/

Next, we consider the three cases.

Ifk = h,then2-k =2-h+1implies that 0 = 1, which is impossible.
. ¥ Too quick here! To cancel, you need to mention/prove that + is
If k € h, then there exists ¢ € w such that k + £ = h. Therefore jpjcctive on the second operand

2. k=2-h+1 = 2. k=2 (k+0)+1 = 2. k=2-k+2-0+1 = 0=2-L+1 = 0=(2-0)7
¥ Distribution — this need another induction if you do not state it priorly
But 0 = @ is not the successor of any set. Contradication.

If h € k, then there exists ¢ € w such that 4 + ¢ = k. Therefore
2 k=2 h+1 = 2-0=1

We shall prove that this is impossible by induction on ¢. Consider the formula ¢, := (¢ =0V 1€ 2-¥¢).
A much simpler way for this part, directly use induction on n:
-Forn=0:2-k+1=(2"-k)t++#0, so 0 cannot be odd
- Assume n, for nt+: supposent=2-k=2-h+1,thenk#0,sok=m+,andn=2 - m+ 1 =2 - h, contradicting inductive
hypothesis



The base case vy is trivial. Suppose that ¢, holds. If # = 0,then1 € 2 =2-1 = 2. ¢". So 1,+ holds. If 0 € ¢,
then by induction hypothesis, 1 € 2- . But2-/€2-£+2=2-¢7.S01 € 2-/{", and v,+ holds. ‘/ O

Question 6 o=

A Peano system is a triple (A4, s,ag) in which A is a set, ap € A,and s : A — A is a function which is (a) one-to-
one, (b) does not include ay in its range, and (c) satisfies the Principle of Induction: that is, if S C A,ap € S and
Va(a € S — s(a) € S),then § = A.

(i) Prove that (w,z + xT,0) is a Peano system.

(ii) Suppose (A, s,ap) is a Peano system. Prove that there exists an isomorphism from (w, *,0) to (4, s, ag) , that is,
there is a bijection f : w — A such that f(0) = ap and, foralln € w, f (n*) = s(f(n)).

[Hence, up to isomorphism, (w,™,0) is the unique Peano system.]

[Hint: Define f by recursion and verify the required properties.]

Proof. (i) Lets:w — wdefinedbyz s 2.
First, by Theorem 4.11, s is injective.
Second, it is clear that n ¢ 0 = @ for all n € w. Hence 0 ¢ im(s).

Third, suppose that S Cw,0 =g € S,and Va(a € S — a™ € S). The by Axiom of Infinity S is an inductive set.

Hencew € S.But S C w. S0 S = w. ¥ You do not need Axiom of
B B Infinity here
(ii) By Theorem 5.1 there exists amap f : w — A such that f(0) = ap and f(n™) = s(f(n)). We shall prove that f is
a bijection.

f is surjective: Consider S := im(f) :={y € A: In(n € w Ay = f(n))}. Since ag = f(0), ap € S. Fora € S,
there exists n € w such that a = f(n). Then s(a) = s(f(n)) = f(n*) € S. Hence Va(a € S — s(a) € S). As
(4, s,a0) is a Peano system, we conclude that S = A. Hence f is surjective.

f is injective: Suppose that it is not. There exists n,m € w such that n # m and f(n) = f(m). Without loss of
generality suppose that n € m. Then there exists ¢ € w such that n + ¢ = m. Then f(n +¢) = f(n).

(a) We prove by induction on & that f(n + k) = f(m + k) forall k € w:
Base case: f(n+0) = f(n) = f(m) = f(m+0).

Induction case: Suppose that f(n + k) = f(m + k). Then f(n+ k%) = f(n+k)") = s(f(n+ k) =
s(f(m+k)) = f((m+k)*)=f(m+ k"), / This is not by inductive hypothesis here, but

We prove by induction on k that f(n + k - £) = f(n) for all k € w: "ather fm k- 1)=f(n -k 1) from (a)! So you
should write instead:

Base case: f(n+0-¢) = f(n+0) = f(n). fn+k-1+)=f(m+k-1) :i(nJrk 1) = f(n)
Induction case: Suppose that f(n + k- ¢) = f(n). Then f(n+k* - £) = f(n+ k- £+0) = f(n+{) = f(n).

®

~

(c

~

We prove by induction on a that p, := (e € wAn€a) > Fk(kcwAn+k-£<araen+kT-0)).

Base case: ©o is true Vacuously_ Again, no need for this. at =a U {a}, son €€ at
x implies eithern=aorn € a.
Induction case: Suppose that ¢, is true. If a € n, thenn ¢ a™, so ¢,+ holds vacuously. If a = n, then

n+0-f<n=aanda =n € n+1-4£ If n € a, by induction hypothesis there exists ¥ € w such that
kcwAn+k-f<aandacn+ k' L Letbcwsuchthata+b=n-+kt -0 Ifb=1,thena®™ =n+kt £
andat €n+ kTt .¢;if1 €b, thenat e n+kt-fandn+ k-4 <at.

(d) Now, for a € w such that n € a, there exists k € wsuchthatn +k%k-£ < a <n+k*t £ Letb € wsuch that
a=n+k-¢+0b. Inparticular, sincea € n+ k* - £, we have b € ¢. Then f(a) = f(n+k-£+0b) = f(n+Db).
We deduce that im(f) has at most m — 1 distinct elements: f(0), ..., f(m — 1) = f(n+ £ — 1). But\since f is

surjective, A is a set with finitely many distinct elements.  You have not shown this! Same proof as (a) though,

. . . ... . butyouneedtomentionit )
(e) Since A is finite, by Theorem 9.2, s : A — A is injective implies that s is surjective, which contradicts that

ap ¢ im(s).
We conclude that f is bijective. O
Again, a much simpler way for this part, directly use induction on n to prove that for all m > n, f(m) # f(n):
- For n = 0: for m > 0, m = k+, so f(m) = s(f(k)) # a0 = f(0)
- Assume n, for n+: for m > n+, m = k+ for some k > n. If s(f(k)) = f(m) = f(n+) = s(f(n)), then f(k) = f(n), contradicting
inductive hypothesis



Question 7 o

Let X = X be a set. By the Axiom of Unions, the sets X; = |J X, Xo = |J X1, ... are sets. The transitive closure of X
is defined to be T'(X) = Uy, X» = U {Xo, X1, ...}. Prove that

(i) T(X)isaset
(ii) T(X) is transitive
(i) X € T(X)
(iv) If X C Y and Y is transitive then T(X) C Y
(v) If X is transitive then T'(X) = X.

Proof. (i) Let ¢(z,y) := y = Jz. Then Vz3lyp(z,y). By Theorem 7.2 (which is based on the Axiom Scheme of Replace-
ment), there exists a set Y and a function f : w — Y such that f(0) = X, f(1) = U Xo = Xi,... f(n) = X,, for
all n € w. Then by Axiom Scheme of Comprehension,

Z:={yeY:InnhecwA f(n)=y)}

is a set with elements X, X1, X, ...
We can define 7'(X) to be | ZJn particular, we have Vz(z € T(X) <> In(n e w Az € X,,)).

(ii) For z € T(X), there exists X; € Z such that z € X;. Thenz C |JX; = X;41. But X;;; € Z implies that
Xi+1 CT(X). Hence x C T(X). Hence T'(X) is transitiveJ

(iii) X, € Z implies that Xy C T(X).

(iv) We use induction on n to prove that X,, C Y for all n € w. Base case X = X, C Y. Induction case: Suppose
that X,, CY.Forz € X,,+ = J X, there exists y € X,, such that z € y. By induction hypothesis y € Y. Since
Y is transitive, x € y € Y implies that z € Y. Hence X,,+ C Y.

We deduce that T'(X) = UJ,,c, Xn C Y. ‘/
(v) Let Y = X in (iv) we obtain that 7'(X) C X. But by (iii) we have X C T'(X). Hence T'(X) = XV O

Question 8 o
A set X is called hereditarily finite if its transitive closure 7'(X) is a finite set.

(i) Prove that the following sets are hereditarily finite
2, {2}, {e.{g}}, {{g}.{2.{2}}}

(i) Prove that a subset of a hereditarily finite set is hereditarily finite, and an element of a hereditarily finite set is
hereditarily finite.

[You may assume: a subset of a finite set is finite]

(iii) Let H be the class of hereditarily finite sets. It turns out that H is in fact a set. Prove that the Empty Set Axiom,
the Axioms of Extensionality, Pairs, Unions and the Comprehension Scheme are all true in H.

[For example, the Axiom of Pairs is true in H provided that, if a,b are hereditarily finite sets, there is a hereditarily
finite set c whose only hereditarily finite elements are a and b. This will be true if indeed {a, b} is hereditarily finite.]

(iv) Isw € H?

(v) Show that the Axiom of Infinity is not a consequence (in first order predicate logic) of the Axioms of Empty Set,
Extensionality, Pairs, Union and Comprehension Scheme.

(vi) A setis called hereditarily countable if T'(X) is a countable set (i.e. is finite or is in bijection with w ). Let K be the
class of hereditarily countable sets. In fact K is a set. Now w € K. Which of the axioms Extensionality, Empty
Set, Pairs, Unions, Comprehension Scheme, Infinity, Power Set hold in K?



[You may use that a countable union of countable sets is countable, though this does not follow from the axioms so far
given.]

(vii) Is it possible to prove the Power Set Axiom from the above axioms (now including Axiom of Infinity)?

Proof.

(iii) Fg ZF1: Trivial.

(i) In Sheet 1 Question 1.(i) Line 13, we have proven that | J@ = @. That is, | J0 = 0. We know that w is transitive.

Then Jnt =nforalln € w. This does not help. You used instead that each n € o is transitive ¥

Let Xo := @ = 0and X,,+ := [J X,, foreachn € w. Then X,, = 0 for alln € w. In particular T'(X) = {J,,c, Xn =
0. Since 0 is finite, we conclude that 0 is hereditarily finite.

Let Xy := {@} = 1. and X,,+ := X, foreachn € w. Then X,, = 0 for all n > 1. In particular 7'(X)
Unew Xn = 1. Since 1 is finite, we conclude that 1 is hereditarily finite.

Let Xy := {@,{@}} = 2. and X,,+ :=|J X,, foreachn € w. Then X; =1 and X,, = 0 for all n > 2. In particular

T(X) = U, e, Xn = 2. Since 2 is finite, we conclude that 2 is hereditarily finite.

Let Xy := {{@},{9,{o}}} = {1,2}. and X,,+ := | X,, foreachn € w. Then X; = [J{1,2} =2, Xo =J2 =1

and X,, = 0 for all n > 3. In particular T(X) = |J,,c, Xn = {0,1,2} = 3. Since 3 is finite, we conclude that
{1, 2} is hereditarily finite. ‘/

(i) We state a lemma:
VaVy(z Cy — Ux - Uy)
The proof is trivial.

Let X be hereditarily finiteand Y C X. Let X := X and X,,+ := |J X, foralln € w. LetYy := Y andY,+ :=JY,
for all n € w. Inductively we have Y,, C X,, foralln € w. Hence T'(Y) = U,,c, Yn € U, i, Xn = T(X). Since
T(X) is finite, T(Y') is finite. Hence Y € H.

Forz € X,z C X; = |JX. Similar to above we have T'(z) C T(U X). But T(J X) U X = T(X). Hence T (U X)
is finite and 7'(x) is finite. z € H‘/
Note: when a formula ¢ is true in a model H without

Fyg ZF2: In part (i) We have proven that & € H. often we actually directly write H = ¢. :)

Fu ZF3: Suppose that =,y € H. It is clear that T'(z) UT(y) = T(z Uy). Since 2 Uy = U{x,y}, T({z,y}) =
T(zUy)U{z,y}. As T(x) and T'(y) are finite, we deduce that T'({z, y}) is finite. Hence {z,y} € H.

Fu ZF4: Suppose that © € H. Then T'(z) is finite. Note that T'(z) = T(Jz) Ux. So T(Jz) C T'(«) is finite.
Hence | Jz € H.

Fu ZF5: Suppose that € H, ¢ € Form(£) and z, wy, ..., wy € Free(p). Lety := {z € z : ¢}. Theny C z. By

part (ii) we have y € H.
(iv) w C T'(w). If w € H, then T'(w) is finite. But w is not finite, contradication.

(v) Suppose that {ZF1, ZF2, ZF3, ZF4, ZF5} - ZF7. Then by Godel’s Completeness Theorem

{ZF1, ZF2, ZF3, ZF4, ZF5} E ZF7. In part (iii) we have proven that Fy {ZF1, ZF2, ZF3, ZF4, ZF5}. But since

w ¢ H, we have Hy ZF7. Hence {ZF1, ZF2, ZF3, ZF4, ZF5} & ZF7. Contradication.‘/

(vi) Animmediate corollary of Theorem 9.10 is that a subset of a countable set is countable. We assume the Axiom

of Choice, which implies that a countable union of countable sets is countable.
Fx ZF1: Trivial.
Fx ZF2: In part (i) We have proven that @ € H. Trivially H C K. Then @ € K.

Fx ZF3: Suppose that z,y € K. T'({z,y}) = T(2 Uy) U{z,y}. As T'(z) and T'(y) are countable, we deduce that

T({x,y}) is countable. Hence {z,y} € K.

Fx ZF4: Suppose that € K. Then T'(z) is countable. Note that 7'(z) = T(Jz) Uz. So T(Ux) C T(z) is
countable. Hence | Jz € K.

Ex ZF5: Suppose that z € K, ¢ € Form(£) and z, w1, ...,wg € Free(p). Lety:={z € z: ¢}. Theny C z. Asin

part (ii) we have T'(y) C T'(x). Since T'(x) is countable, T'(y) is countable. Hence we have y € K.

Fx ZF7: w is countable and transitive. Then T'(w) = w is countable. Hence w € K.

needing premises, we can indeed write = H ¢, but more



Hk ZF6: By Cantor’s Theorem, w < P(w). In particular P(w) is uncountable. As P(w) C T(P(w)), T(P(w)) is
uncountable. Then P(w) ¢ K whereas w € K.

(vii) Suppose that {ZF1, ZF2, ZF3, ZF4, ZF5, ZF7} I ZF6. Then by Godel’s Completeness Theorem
{ZF1, ZF2, ZF3, ZF4, ZF5, ZF7} E ZF6. In part (vi) we have proven that Fx {ZF1, ZF2, ZF3, ZF4, ZF5, ZF7} and
Fx ZF6. Hence {ZF1, ZF2, ZF3, ZF4, ZF5, ZF7} i ZF6. Contradication. ‘/ O



