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We use the first-order language L := {2,✓;P,
S
,P;?,!}, where 2 and ✓ are binary predicates, P is a binary function,

S
and

P are unary functions, and ? and ! are constants.

The equality symbol .
= is used in L which indicates that two terms have the same value under any model and assignment. The

equality symbol = is used in metalanguage which indicates that two strings are equal.

The ZFC axioms we shall use in this sheet are listed below:

ZF1 Extensionality: 8x8y(8z(z 2 x $ z 2 y) $ x
.
= y);

ZF2 Empty Set: 8x ¬x 2 ?;

ZF3 Pairs: 8x8y8z(z 2 P (x, y) $ (x
.
= z _ y

.
= z));

ZF4 Unions: 8x8y(y 2
S
x $ 9z(y 2 z ^ z 2 x));

ZF5 Comprehension Scheme: Let ' 2 Form(L) and z, w1, ..., wk 2 Free('). Then 8x8w1 · · · 8wk9y8z(z 2 y $ (z 2 x ^ '));

ZF6 Power Sets: 8x8y(y 2 P(x) $ y ✓ x);

ZF7 Infinity: 9x(? 2 x ^ 8y(y 2 x ! y+ 2 x)), where y+ is defined to be
S
P (y, P (y, y));

ZF8 Replacement Scheme: Let ' 2 Form(L) and x, y, w1, ..., wk, A 2 Free('). Then 8A8w1 · · · 8wk(8x(x 2 A ! 9!y ') !
9B8y(y 2 B $ 9x(x 2 A ! '))), where 9!y ' is defined to be (9y ' ^ 8z8y((' ^ '[z/y]) ! y

.
= z)).

ZF9 Foundation: 8x(¬x .
= ? ! 9y(y 2 x ^ ¬9z(z 2 y ^ z 2 x)));

AC Choice: 8x(¬? 2 x ! 9f((f : x !
S
x) ^ 8y(y 2 x ! f(y) 2 y))), where (f : x !

S
x) suggests that f is a map from x

to
S
x.

The predicate ✓ is introduced for convenience. It satisfies 8x8y(x ✓ y $ 8z(z 2 x ! z 2 y)).

The constant ! is the smallest inductive set, whose existence and uniqueness follows from the Axioms of Infinity, Comprehension
Scheme, and Extensionality.

Question 1

(a) LetR be a relation (i.e. R is a set of ordered pairs). Prove thatDom(R), which we define to be {x : 9y hx, yi 2 R},
is a set.

(b) LetX,Y be sets. Prove there exists a set whose elements are the surjections fromX to Y .

(c) LetX be a set. Prove that there is a set consisting precisely of all strict total orders onX.

Proof. (a) Note that the ordered pair hx, yi is defined to be {{x}, {x, y}} = P (P (x, x), P (x, y)). Since R ✓ P(P(X [ Y )),SS
R ✓ X [ Y . Therefore we can use the Axiom Scheme of Comprehension and define the domain to be the

set
Dom(R) :=

n
x 2

[[
R : 9y hx, yi 2 R

o

(b) If f : X ! Y is a map, then f ✓ P(P(X [ Y )). Hence f 2 P(P(P(X [ Y ))). We know that it is a first-order
property that f : X ! Y is a surjection:

' := (8x8y (hx, yi 2 f ! (x 2 X ^ y 2 Y )) ^ 8x (x 2 X ! 9!y hx, yi 2 f) ^ 8y (y 2 Y ! 9x hx, yi 2 f))

Therefore we can use the Axiom Scheme of Comprehension and define

S := {f 2 P(P(P(X [ Y ))) : '}

S is the set of all surjections f : X ! Y .

(c) LetR be a relation onX, i.e. R 2 P(P(P(X))). We know that being a strict total order is a first-order property:

'1 : 8x8y((hx, yi 2 R ^ ¬ hy, xi 2 R ^ ¬x .
= y)

_(¬ hx, yi 2 R ^ hy, xi 2 R ^ ¬x .
= y)

_(¬ hx, yi 2 R ^ ¬ hy, xi 2 R ^ x
.
= y)) [Trichotomy]

'2 : 8x8y8z(hx, yi 2 R ! (hy, zi 2 R ! hx, zi 2 R)) [Transitivity]

This is ∧!

✓

✓

α
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Therefore we can use the Axiom Scheme of Comprehension and define

S := {R 2 P(P(P(X))) : '1 ^ '2}

S is the set of all strict total orders onX.

Question 2

Prove, using induction and the fact that each n 2 ! is transitive, that n 2 n is false for every n 2 !.

[Do not use the Axiom of Foundation.]

Proof. Base case: Since ? /2 ?, we have 0 /2 0.

Induction case: Suppose that n /2 n. By definition, n+ := n[ {n}. Assume that n+ 2 n+. Then n[ {n} 2 n[ {n}. So
n [ {n} 2 n or n [ {n} .

= n.

If n [ {n} .
= n, then {n} ✓ n. Then n 2 n, contradicting the induction hypothesis.

If n [ {n} 2 n, since n is transitive, then n [ {n} ✓ n. Therefore {n} ✓ n. Then n 2 n, contradicting the induction
hypothesis.

Hence n+ /2 n+. By Theorem 4.6, n /2 n for all n 2 !.

Question 3

Prove that the function sending n to n! exists (as a set).

[Hint: Use Recursion in the form of Theorem 5.1 withX = ! ⇥ !.]

Proof. Let g : ! ⇥ ! ! ! ⇥ ! given by hm,ni 7! hm · n+, n+i. The map g is well-defined. Now fix h1, 0i 2 !. By Theorem 5.1
there exists a map f : ! ! ! ⇥ ! such that f(0) .

= h1, 0i and f(n+)
.
= g(f(n)).

By the Axiom Scheme of Comprehension, there exists a set

f̃ := {hx, yi 2 ! ⇥ ! : 8z hx, hy, zii 2 f}

We claim that f̃ is a map from ! to ! such that every n 2 ! is sent to n! 2 !.

Question 4

Prove that multiplication on ! is commutative by proving the following statements for n,m 2 ! by induction. You
may use the other arithmetic properties established in lectures; or prove thatm⇤n = n ·m satisfies the same recursion
asm · n.

(i) 0 · n = 0

(ii) m+ · n = m · n+ n

(iii) m · n = n ·m

Proof. We use the following properties of the multiplication · : ! ⇥ ! ! !.

1. n · 0 .
= 0 for all n 2 !;

2. n ·m+ .
= n ·m+ n for all n,m 2 !;

3. Any map ! ⇥ ! ! ! with the above properties is unique.

In addition, we assume all arithmetic of the addition + : ! ⇥ ! ! !.

(i) We use induction on n.

Base case: 0 · 0 .
= 0.

✓

✓

α

∃z instead. You only have ⟨x, ⟨y, x⟩⟩ ∈ f,
                         not ⟨x, ⟨y, z⟩⟩ ∈ f for arbitrary z

α-

α

To prove (i) - (iii) you do not actually need this. You need this
                       only if you view in the alternative way (proving
                       that ⟨m, n⟩︎ → m · n and ⟨m, n⟩ ︎→ n · m are the
                       same map)
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Induction case: Suppose that 0 · n .
= 0. Then 0 · n+ .

= 0 · n+ 0
.
= 0 + 0

.
= 0.

(ii) We use induction on n.

Base case: m+ · 0 .
= 0

.
= 0 + 0

.
= m · 0 + 0.

Induction case: Suppose thatm+ · n .
= m · n+ n. Then

m+ · n+ .
= m+ · n+m+ .

= (m · n+ n) + (m+ 1)
.
= (m · n+m) + (n+ 1)

.
= m · n+ + n+

(iii) We use induction onm.

Base case: 0 · n .
= 0.

Induction case: Suppose thatm · n .
= n ·m. Then

m+ · n .
= m · n+ n

.
= n ·m+ n

.
= n ·m+

Question 5

Write 1 = 0+, 2 = 1+. Define n 2 ! to be even if it is of the form 2 · k for some k 2 ! and odd if it is of the form 2 · h+1
for some h 2 !. Prove that

(i) every element of ! is either even or odd;

(ii) no element of ! is both even and odd.

Proof. (i) We use induction on n to prove that every n 2 ! is either even or odd.

Base case: 0 2 ! is even. This is because 0 .
= 2 · 0.

Induction case: Suppose that n 2 ! is either even or odd.

If n is even, then there exists k 2 ! such that n .
= 2 · k. Then n+ .

= (n+ 0)+
.
= n+ 0+

.
= n+ 1

.
= 2 · k+ 1 is odd.

If n is odd, then there exists k 2 ! such that n .
= 2 · k + 1. Then

n+ .
= n+ 1

.
= (2 · k+ 1) + 1

.
= 2 · k+ (1+ 1)

.
= 2 · k+ (1+ 0+)

.
= 2 · k+ (1+ 0)+

.
= 2 · k+ 1+

.
= 2 · k+ 2

.
= 2 · k+

is even.

Hence n+ is either even or odd.

(ii) Suppose for contradication that n 2 ! is both even and odd. There exists k, h 2 ! such that n = 2 · k = 2 · h+1.

First we use induction onm to prove that 'm := (k 2 m ! 9`(` 2 ! ^ k + `
.
= m)).

Base case: The formula '0 holds vacuously.

Induction case: Suppose that 'm holds. Ifm 2 k, then k /2 m+ because 2 is a strict total order on !. 'm+ holds
vacuously. If m .

= k, then m+ .
= k+. We have k + 1

.
= k+

.
= m+, so 'm+ holds. If k 2 m, then by induction

hypothesis there exists ` 2 ! such that k+ `
.
= m. Hence k+(`+1)

.
= (k+ `)+ 1

.
= m+1

.
= m+. So 'm+ holds.

Next, we consider the three cases.

If k .
= h, then 2 · k .

= 2 · h+ 1 implies that 0 .
= 1, which is impossible.

If k 2 h, then there exists ` 2 ! such that k + ` = h. Therefore

2 · k .
= 2 · h+ 1 =) 2 · k .

= 2 · (k + `) + 1 =) 2 · k .
= 2 · k + 2 · `+ 1 =) 0

.
= 2 · `+ 1 =) 0

.
= (2 · `)+

But 0 = ? is not the successor of any set. Contradication.

If h 2 k, then there exists ` 2 ! such that h+ ` = k. Therefore

2 · k .
= 2 · h+ 1 =) 2 · ` .

= 1

We shall prove that this is impossible by induction on `. Consider the formula  ` := (`
.
= 0 _ 1 2 2 · `).

✓

✓

✓

✓

No need for this. m+ = m ∪ {m}, so k ∈ m+ implies 
either k = m or k ∈ m.

✓
Too quick here! To cancel, you need to mention/prove that + is 
                              injective on the second operand

Distribution — this need another induction if you do not state it priorly

α-

A much simpler way for this part, directly use induction on n:
 - For n = 0: 2 · k + 1 = (2 · k)+ ≠ 0, so 0 cannot be odd
 - Assume n, for n+: suppose n+ = 2 · k = 2 · h + 1, then k ≠ 0, so k = m+, and n = 2 · m + 1 = 2 · h, contradicting inductive 
hypothesis
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The base case  0 is trivial. Suppose that  ` holds. If `
.
= 0, then 1 2 2

.
= 2 · 1 .

= 2 · `+. So  `+ holds. If 0 2 `,
then by induction hypothesis, 1 2 2 · `. But 2 · ` 2 2 · `+ 2

.
= 2 · `+. So 1 2 2 · `+, and  `+ holds.

Question 6

A Peano system is a triple (A, s, a0) in which A is a set, a0 2 A, and s : A ! A is a function which is (a) one-to-
one, (b) does not include a0 in its range, and (c) satisfies the Principle of Induction: that is, if S ✓ A, a0 2 S and
8a(a 2 S ! s(a) 2 S), then S = A.

(i) Prove that (!, x 7! x+, 0) is a Peano system.

(ii) Suppose (A, s, a0) is a Peano system. Prove that there exists an isomorphism from (!,+, 0) to (A, s, a0) , that is,
there is a bijection f : ! ! A such that f(0) = a0 and, for all n 2 !, f (n+) = s(f(n)).

[Hence, up to isomorphism, (!,+, 0) is the unique Peano system.]

[Hint: Define f by recursion and verify the required properties.]

Proof. (i) Let s : ! ! ! defined by x 7! x+.

First, by Theorem 4.11, s is injective.

Second, it is clear that n /2 0 = ? for all n 2 !. Hence 0 /2 im(s).

Third, suppose that S ✓ !, 0 = ? 2 S, and 8a(a 2 S ! a+ 2 S). The by Axiom of Infinity S is an inductive set.
Hence ! ✓ S. But S ✓ !. So S .

= !.

(ii) By Theorem 5.1 there exists a map f : ! ! A such that f(0) .
= a0 and f(n+)

.
= s(f(n)). We shall prove that f is

a bijection.

f is surjective: Consider S := im(f) := {y 2 A : 9n(n 2 ! ^ y
.
= f(n))}. Since a0 = f(0), a0 2 S. For a 2 S,

there exists n 2 ! such that a = f(n). Then s(a) = s(f(n)) = f(n+) 2 S. Hence 8a(a 2 S ! s(a) 2 S). As
(A, s, a0) is a Peano system, we conclude that S

.
= A. Hence f is surjective.

f is injective: Suppose that it is not. There exists n,m 2 ! such that n 6 .= m and f(n)
.
= f(m). Without loss of

generality suppose that n 2 m. Then there exists ` 2 ! such that n+ `
.
= m. Then f(n+ `)

.
= f(n).

(a) We prove by induction on k that f(n+ k)
.
= f(m+ k) for all k 2 !:

Base case: f(n+ 0)
.
= f(n)

.
= f(m)

.
= f(m+ 0).

Induction case: Suppose that f(n + k)
.
= f(m + k). Then f(n + k+)

.
= f((n + k)+)

.
= s(f(n + k))

.
=

s(f(m+ k))
.
= f((m+ k)+)

.
= f(m+ k+).

(b) We prove by induction on k that f(n+ k · `) .
= f(n) for all k 2 !:

Base case: f(n+ 0 · `) .
= f(n+ 0)

.
= f(n).

Induction case: Suppose that f(n+ k · `) .
= f(n). Then f(n+ k+ · `) .

= f(n+ k · `+ `)
.
= f(n+ `)

.
= f(n).

(c) We prove by induction on a that 'a := ((a 2 ! ^ n 2 a) ! 9k(k 2 ! ^ n+ k · ` 6 a ^ a 2 n+ k+ · `)).

Base case: '0 is true vacuously.

Induction case: Suppose that 'a is true. If a 2 n, then n /2 a+, so 'a+ holds vacuously. If a .
= n, then

n + 0 · ` 6 n
.
= a and a

.
= n 2 n + 1 · `. If n 2 a, by induction hypothesis there exists k 2 ! such that

k 2 ! ^ n+ k · ` 6 a and a 2 n+ k+ · `. Let b 2 ! such that a+ b
.
= n+ k+ · `. If b .

= 1, then a+
.
= n+ k+ · `

and a+ 2 n+ k++ · `; if 1 2 b, then a+ 2 n+ k+ · ` and n+ k · ` 6 a+.

(d) Now, for a 2 ! such that n 2 a, there exists k 2 ! such that n + k · ` 6 a < n + k+ · `. Let b 2 ! such that
a

.
= n+ k · `+ b. In particular, since a 2 n+ k+ · `, we have b 2 `. Then f(a)

.
= f(n+ k · `+ b)

.
= f(n+ b).

We deduce that im(f) has at mostm� 1 distinct elements: f(0), ..., f(m� 1) = f(n+ `� 1). But since f is
surjective, A is a set with finitely many distinct elements.

(e) Since A is finite, by Theorem 9.2, s : A ! A is injective implies that s is surjective, which contradicts that
a0 /2 im(s).

We conclude that f is bijective.

✓

You do not need Axiom of 
Infinity here✓

✓

This is not by inductive hypothesis here, but 
rather f(m + k · l) = f(n + k · l) from (a)! So you 
should write instead:
  f(n + k · l + l) = f(m + k · l) = f(n + k · l) = f(n)

Again, no need for this. a+ = a ∪ {a}, so n ∈ a+ 
implies either n = a or n ∈ a.

✓

✓

You have not shown this! Same proof as (a) though, 
but you need to mention it

✓
Again, a much simpler way for this part, directly use induction on n to prove that for all m > n, f(m) ≠ f(n):
 - For n = 0: for m > 0, m = k+, so f(m) = s(f(k)) ≠ a0 = f(0)
 - Assume n, for n+: for m > n+, m = k+ for some k > n. If s(f(k)) = f(m) = f(n+) = s(f(n)), then f(k) = f(n), contradicting 
inductive hypothesis

α-
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Question 7

Let X = X0 be a set. By the Axiom of Unions, the sets X1 =
S
X,X2 =

S
X1, . . . are sets. The transitive closure of X

is defined to be T (X) =
S1

n=0 Xn =
S
{X0, X1, . . .}. Prove that

(i) T (X) is a set

(ii) T (X) is transitive

(iii) X ✓ T (X)

(iv) IfX ✓ Y and Y is transitive then T (X) ✓ Y

(v) IfX is transitive then T (X) = X.

Proof. (i) Let '(x, y) := y
.
=

S
x. Then 8x9!y'(x, y). By Theorem 7.2 (which is based on the Axiom Scheme of Replace-

ment), there exists a set Y and a function f : ! ! Y such that f(0) .
= X0, f(1)

.
=

S
X0

.
= X1,... f(n)

.
= Xn for

all n 2 !. Then by Axiom Scheme of Comprehension,

Z := {y 2 Y : 9n(n 2 ! ^ f(n)
.
= y)}

is a set with elementsX0, X1, X2, ...

We can define T (X) to be
S
Z. In particular, we have 8x(x 2 T (X) $ 9n(n 2 ! ^ x 2 Xn)).

(ii) For x 2 T (X), there exists Xi 2 Z such that x 2 Xi. Then x ✓
S
Xi = Xi+1. But Xi+1 2 Z implies that

Xi+1 ✓ T (X). Hence x ✓ T (X). Hence T (X) is transitive.

(iii) X0 2 Z implies thatX0 ✓ T (X).

(iv) We use induction on n to prove that Xn ✓ Y for all n 2 !. Base case X = X0 ✓ Y . Induction case: Suppose
that Xn ✓ Y . For x 2 Xn+ =

S
Xn, there exists y 2 Xn such that x 2 y. By induction hypothesis y 2 Y . Since

Y is transitive, x 2 y 2 Y implies that x 2 Y . HenceXn+ ✓ Y .

We deduce that T (X) =
S

n2! Xn ✓ Y .

(v) Let Y = X in (iv) we obtain that T (X) ✓ X. But by (iii) we haveX ✓ T (X). Hence T (X)
.
= X.

Question 8

A setX is called hereditarily finite if its transitive closure T (X) is a finite set.

(i) Prove that the following sets are hereditarily finite

?, {?}, {?, {?}}, {{?}, {?, {?}}}

(ii) Prove that a subset of a hereditarily finite set is hereditarily finite, and an element of a hereditarily finite set is
hereditarily finite.

[You may assume: a subset of a finite set is finite]

(iii) LetH be the class of hereditarily finite sets. It turns out thatH is in fact a set. Prove that the Empty Set Axiom,
the Axioms of Extensionality, Pairs, Unions and the Comprehension Scheme are all true inH.

[For example, the Axiom of Pairs is true in H provided that, if a, b are hereditarily finite sets, there is a hereditarily
finite set c whose only hereditarily finite elements are a and b. This will be true if indeed {a, b} is hereditarily finite.]

(iv) Is ! 2 H?

(v) Show that the Axiom of Infinity is not a consequence (in first order predicate logic) of the Axioms of Empty Set,
Extensionality, Pairs, Union and Comprehension Scheme.

(vi) A set is called hereditarily countable if T (X) is a countable set (i.e. is finite or is in bijection with ! ). LetK be the
class of hereditarily countable sets. In factK is a set. Now ! 2 K. Which of the axioms Extensionality, Empty
Set, Pairs, Unions, Comprehension Scheme, Infinity, Power Set hold inK?

✓
✓

✓

✓
✓

α

α
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[You may use that a countable union of countable sets is countable, though this does not follow from the axioms so far
given.]

(vii) Is it possible to prove the Power Set Axiom from the above axioms (now including Axiom of Infinity)?

Proof. (i) In Sheet 1 Question 1.(i) Line 13, we have proven that
S
? .

= ?. That is,
S
0

.
= 0. We know that ! is transitive.

Then
S
n+ .

= n for all n 2 !.

LetX0 := ? = 0 andXn+ :=
S
Xn for each n 2 !. ThenXn

.
= 0 for all n 2 !. In particular T (X) =

S
n2! Xn

.
=

0. Since 0 is finite, we conclude that 0 is hereditarily finite.

Let X0 := {?} = 1. and Xn+ :=
S
Xn for each n 2 !. Then Xn

.
= 0 for all n > 1. In particular T (X) =S

n2! Xn
.
= 1. Since 1 is finite, we conclude that 1 is hereditarily finite.

LetX0 := {?, {?}} = 2. andXn+ :=
S
Xn for each n 2 !. ThenX1

.
= 1 andXn

.
= 0 for all n > 2. In particular

T (X) =
S

n2! Xn
.
= 2. Since 2 is finite, we conclude that 2 is hereditarily finite.

Let X0 := {{?}, {?, {?}}} = {1, 2}. and Xn+ :=
S
Xn for each n 2 !. Then X1 =

S
{1, 2} = 2, X2

.
=

S
2

.
= 1

and Xn
.
= 0 for all n > 3. In particular T (X) =

S
n2! Xn

.
= {0, 1, 2} = 3. Since 3 is finite, we conclude that

{1, 2} is hereditarily finite.

(ii) We state a lemma:
8x8y(x ✓ y !

[
x ✓

[
y)

The proof is trivial.

LetX behereditarily finite andY ✓ X. LetX0 := X andXn+ :=
S
Xn for alln 2 !. LetY0 := Y andYn+ :=

S
Yn

for all n 2 !. Inductively we have Yn ✓ Xn for all n 2 !. Hence T (Y )
.
=

S
n2! Yn ✓

S
ni! Xn

.
= T (X). Since

T (X) is finite, T (Y ) is finite. Hence Y 2 H.

For x 2 X, x ✓ X1 =
S
X. Similar to above we have T (x) ✓ T (

S
X). But T (

S
X) [X

.
= T (X). Hence T (

S
X)

is finite and T (x) is finite. x 2 H.

(iii) ✏H ZF1: Trivial.

✏H ZF2: In part (i) We have proven that ? 2 H.

✏H ZF3: Suppose that x, y 2 H. It is clear that T (x) [ T (y)
.
= T (x [ y). Since x [ y =

S
{x, y}, T ({x, y}) .

=
T (x [ y) [ {x, y}. As T (x) and T (y) are finite, we deduce that T ({x, y}) is finite. Hence {x, y} 2 H.

✏H ZF4: Suppose that x 2 H. Then T (x) is finite. Note that T (x) .
= T (

S
x) [ x. So T (

S
x) ✓ T (x) is finite.

Hence
S
x 2 H.

✏H ZF5: Suppose that x 2 H, ' 2 Form(L) and z, w1, ..., wk 2 Free('). Let y := {z 2 x : '}. Then y ✓ x. By
part (ii) we have y 2 H.

(iv) ! ✓ T (!). If ! 2 H, then T (!) is finite. But ! is not finite, contradication.

(v) Suppose that {ZF1, ZF2, ZF3, ZF4, ZF5} ` ZF7. Then by Gödel’s Completeness Theorem
{ZF1, ZF2, ZF3, ZF4, ZF5} ✏ ZF7. In part (iii) we have proven that ✏H {ZF1, ZF2, ZF3, ZF4, ZF5}. But since
! /2 H, we have 6✏H ZF7. Hence {ZF1, ZF2, ZF3, ZF4, ZF5} 6✏ ZF7. Contradication.

(vi) An immediate corollary of Theorem 9.10 is that a subset of a countable set is countable. We assume the Axiom
of Choice, which implies that a countable union of countable sets is countable.

✏K ZF1: Trivial.

✏K ZF2: In part (i) We have proven that ? 2 H. TriviallyH ✓ K. Then ? 2 K.

✏K ZF3: Suppose that x, y 2 K. T ({x, y}) .
= T (x [ y) [ {x, y}. As T (x) and T (y) are countable, we deduce that

T ({x, y}) is countable. Hence {x, y} 2 K.

✏K ZF4: Suppose that x 2 K. Then T (x) is countable. Note that T (x) .
= T (

S
x) [ x. So T (

S
x) ✓ T (x) is

countable. Hence
S
x 2 K.

✏K ZF5: Suppose that x 2 K, ' 2 Form(L) and z, w1, ..., wk 2 Free('). Let y := {z 2 x : '}. Then y ✓ x. As in
part (ii) we have T (y) ✓ T (x). Since T (x) is countable, T (y) is countable. Hence we have y 2 K.

✏K ZF7: ! is countable and transitive. Then T (!)
.
= ! is countable. Hence ! 2 K.

This does not help. You used instead that each n ∈ ω is transitive

✓

✓ Note: when a formula φ is true in a model H without 
needing premises, we can indeed write ︎︎⊨_H φ, but more 
often we actually directly write H ︎︎⊨ φ.  :)

✓
✓

✓
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6✏K ZF6: By Cantor’s Theorem, ! � P(!). In particular P(!) is uncountable. As P(!) ✓ T (P(!)), T (P(!)) is
uncountable. Then P(!) /2 K whereas ! 2 K.

(vii) Suppose that {ZF1, ZF2, ZF3, ZF4, ZF5, ZF7} ` ZF6. Then by Gödel’s Completeness Theorem
{ZF1, ZF2, ZF3, ZF4, ZF5, ZF7} ✏ ZF6. In part (vi) we have proven that ✏K {ZF1, ZF2, ZF3, ZF4, ZF5, ZF7} and
6✏K ZF6. Hence {ZF1, ZF2, ZF3, ZF4, ZF5, ZF7} 6✏ ZF6. Contradication.

✓

✓


