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Personal Conventions: N denotes the set of non-negative integers. Z  denotes the set of positive integers.

I attempted Question 1 to 5. Q5(i) is not fully solved.

Question 1

Define ¢p: R — R by

1
) ex ifx>0
‘P(X)_{ 0 ifx<0

Show that ¢ is C*, and deduce that
W (x) = p2(1 - x))2(1+x))
belongs to 2 (R). Does the restriction to (-1, 1), W|(_1,1)» belong to 2 (—1,1)? Calculate the Taylor series for ¢ about 0 (note:
not for ¥ ). Does the series converge, and if so, then what is its sum?
Proof. First we shall prove by induction on n that
—x

_ 1
(p(")(x)z plx 1)e , x>0
0, x<0

where p € Q[x] and deg p = 2n. For n = 0 it is true. Suppose that it is true for¢" (x). Then for x > 0,

d -1 d -1
(n+1) _ “Lya=xT ) — 42 Y= _ 2 (v _ —1y) o= X
¢ (X)——dx(p(x )e ) t—dt(p(t)e )=-x2(p'xH-pxhH)e

Letg(x 1) =x2(p(x™1) - p'(x™1)). Then degg = degp+2 =2(n+1)., For x <0, it is clear that $""*V (x) = 0. As x \, 0,

: 1y —xb s -t _
)lcli%q(x )e —tgrpooq(t)e =0

Hence ([)(”“) (x) — 0 as x — 0. The derivative at x = 0:

(n) (n)
gb("“)(O) =1lim ¢ = lim tp(t)e”"=0=lim L)
x\.0 X t—+o00 x,/0 X

Hence ¢"*V (x) exists and is continuous on R.
We deduce that ¢ € C°(R).

For w(x) = ¢(2(1 — x))¢p(2(1 + x)), it is clear that ¢ € C*°(R). Since ¢(2(1 —x)) = 0 for x = 1 and ¢(2(1 + x)) = 0 for x < -1,
supp v € [—1,1)Hence v has a compact support. We deduce that ¢ € ' (R).

Note that 1//|(71 D has support (-1, 1), which is not compact. Then 1//|(71 nE D(-1,1).
We have shown that ¢ (0) = 0 for all n € N.. Therefore the Taylor series of ¢ at x = 0:
1
Y =™ x"=0
n=0 n!

The sum converges not to ¢(x) but to 0. It irfiplies that ¢ is not analytic near x = 0. O

Question 2
In this question all functions are real-valued.

(a) Let K be a compact proper subset of the open interval (a, b). Show carefully that there exists p € & (a, b) such that
O<p<landp=1onKk.

(b) Give an example of ¢, ¥ € & (R) such that max(¢p, ¥), min(¢, ) are not smooth compactly supported test functions. Here
we define max (¢, ) (x) = max{@(x),w(x)} for each x and similarly for min(¢p, v).



Next, let u € 9 (a, b). Show that there exist u;, uy € D (a, b) with 13 =0, u, =0 and u = u; — u,.

(c) Generalize the last statement to n dimensions as follows. Let Q be a nonempty open subset of R” and u € 2(Q). Show
that there exist 1, up € 2 (Q) with u; =0 and uy =0such that u=u; —u,

(Hint: You may for instance note that4u = (u+1)? — (u—1)? and if v is a cut-off function between the support of u and the
boundary of Q, then vu = u.)

Proof. (a)

(b)

(©

This is a special case of Theorem 2.11.

1 ~
AsKc(a,b),let0<6 < Zmin{ian—a,b—supK}. LetK:={xe(a,b):qyeK|x—-y|<26}<(a,b). Let

1
e —, |x|<1
B(x)::{ Xp(xz—l) I
0)

x|=1
Let
1 X
ps5(x) = —B(g
6/B(x)dx
R

be the standard modifier in R. We know that ps € 2 (R) and it is supported on B(0,5). Let
px):=ps*lg= pra(x— Mgy dy= fkpa(x— »dy

The map y — pg(x — y) is supported on B(x,5). Hence ¢ is supported on

{zE[R:EIxEI?HyEB(x,&): ly—zl<é}c{zeR:Ixe K |x—z| <38} < (a,b)

It is clear by Dominated Convergence Theorem that ¢ is smooth. Hence ¢ € 9 (a, b)./Since f ps=1and ps =0, we
R

have 0 <@ <1on (a,b).

For x € K, as y — pg(x — y) is supported on B(x,5) € K, we have

<p(x):fps(x—y)dy:fpa(y)dy:l
K R

hence ¢ =1onK.

Let ¢(x) = B(x) and ¥ (x) = B(x—1). Then ¢, ¢ € 2 (R). But max{¢, ¢}, min{¢p, v} ¢ 2 (R) because they are not differen-
tiable at x =1/2:
@(1/2)=B(1/2)=B(-1/2)=y(1/2)

So max{e,w}(1/2) = min{p,w}(1/2). But ¢'(1/2) >0 and ¥’'(1/2) < 0. So x = 1/2 is a local minimum of max{¢p, y} and a
local maximum of min{¢p, y}. If they are differentiable then by Fermat’s Lemma the derivative at x = 1/2 should be 0.

For ue 9(a,b),let v:(a,b) — [0,1] be a cut-off,function between d(a, b) and supp u. Then u = vu = v(u+ D2/4-v(u-
1)2/4. Let u; = v(u+1)%/4and uy = v(u—1)%/4. Then u = u; — ty, tq, U = 0and uy, us € D(a, b).

We should generalize (a) to a compact subset K of an open set Q € R”. The proof is essentially the same. We define
1.
o< 1 dist(K,00Q)

and
1 X
ps5(x) = —B(—

6"[ B(x)dx 0
R

The result ¢ is a cut-off function between K and 6Q. Let v be a cut-off function between supp u and 0Q. Take u; =
v(u+1)%/4and up = v(u—1)%/4. O



Question 3

Let Q be a nonempty and open subset of R”?,1 < p < oo and f € L”(Q). Show that for each € > 0 there exists g € 2 (Q) such that
If-glp<e.

(Hint: One approach is to do it in two steps. First choose an appropriate open subset O < Q so that h = fl¢ is a good LP
approximation of f. Then use a result from lectures.)

Proof. By Lemma 2.9, C2(Q) is dense in L” (Q) so there exists a h € C2(Q) such that “f - h||p < €/2. By Proposition 2.7(iii),
(lsing) || ps*h— h”p = 0. Hence there exists § > 0 such that ||p5 * h— th < ¢€/2. Hence

I£=psxhll, <l =l + s+ h-h], <

By Proposition 2.7(i), ps * h € C*(Q). It is also compactly supported as & is compactly supported. Hence ps * h € 9 (R), which
completes the proof. s i O
(s twis o ¥J 201

Question 4

1 1
Let p, g € [1,00] with ; + E = 1. Show that if f € LP(R), g € LY(R), then f = g € C(R). Next, show that if p € (1,00), then f x g€
Co(R), that is, f * g is continuous and (f * g)(x) — 0 as |x| — co. What happens when p =1 and g = o0?

Proof. Without loss of generality we assume that p # co.

* By theresult in Question 3, there exists a sequence {f;,} in C2(R) such that f,, — f in LP-norm. We claim that f,,xg — f*g
uniformly. Indeed,

1o g- £ gl =sup | [ (- Pz ngI]

1/p
< ||g||qSURI? (fRKfn—f)(x—y)lpdy) (Holder’s Inequality)
X€
=fu=1l,l8l, =0

as n — oo. Hence we have the uniform convergence.

¢ For each f;, we claim that f;, * g is uniformly continuous on R. Since f;, is continuous and compactly supported, by
Heine-Cantor Theorem it is uniformly continuous on R:

Ve>036>0Vx, xR (|l —x2l <6 = [ fn(x1) — fulx2)| <é)
For x1, x; € Rwith |x; — x2] < 6,
|(fn % 8)(x1) — (fn * &) (x2)| = UR (fax1 =) = fulxa— ) g0) dy'

1/p
<|ll, ([R [faGx1 =) = fula—p|P dy) (Holder’s Inequality)
<¢||g|l, m (supp f)"'”

where m is the standard Lebesgue measure on R. Hence f;, * g is uniformly continuous on R.

* Since f * g is the uniform limit of the sequence of continuous functions {f, * g}, we deduce that f * g is continuous on
R.

Now we consider p, g # co. Then there exists {f,,} and {g,} in C’(R) such that f,, — f in LP-norm and g, — g in L9-norm.
Then we have

| fo* 8= 1% 8loo = fn=1) % gn+ [ % &n=&)loo <= £l &l + 171, | 8n — ]l 4 =0

as n — oo. Note that {f,, * g,} is a sequence in C(C)([R{). Then for € > 0 there exists N € N such that for all n > N, |(f * g)(x) —
(fn * gn)(x)| < € for all x € R (since both f;, * g, and f * g are continuous, the essential supremum is the supremum). Hence



for x ¢ supp fu, |(f * 8)(x)| < . We deduce that (f * g)(x) — 0 as | x| — oo.

It is not the case when p = 1 and g = co. A trivial example will be f(x) = e * e L!(R) and g(x) =1eL*®(R). Then

+00

(f*g)(x)=f e Pdr=vn

o0

So f * g does not tend to 0 as |x| — go. O

Question 5

In each of the following 3 cases decide whether or not u; is a distribution:

(u, @)=Y 2779 00), (uz,0)=Y 2790 V(j), (us ) =07
= =

where ¢ € Z(R) is so that the expression makes sense.

Proof.

1. u, is not a distribution.

First we claim that there exists a compact set K <R and a sequence {¢,} € 2 (K) such that

[<ur, @) =

>nisup{

j=0

Y 2779 0)
j=1

<p§1j)(x)‘ :xEK}
We can make, for example, all derivatives ¢/ (0) > 0, and make ¢ """V (0) arbitrarily large while the first n derivatives

remain bounded in the compact set K. I am not sure if it is possible, given that K is independent of #.

(In the remark after Example 3.12, a criterion of distribution is given as follows: Suppose that {x; : j € J} = R has no
limit points. Then (T, ) := Z @' (x i) is a distribution of order sup «j. This test fails for uy because all derivatives are

jeJ jeJ
evaluated at0.)
Put A, =(u1, ¢, and v, = ¢,/ A,. Then
i sup{‘wg)(x)‘ :xeK} < l
j=0 n

and hence |1//51j) (x)| <1/nforall x € K and j < n. In particular v, — 0 in 2 (R). But {13, ¥ ,) = 1 does not converge to 0.

. Uy is a distribution.

It is clear that u; is a linear functional. Suppose that {¢,} € 2 (R) and ¢ € S (R) such that ¢, LA ¢ as n — oo. There
exists N € N such that supp ¢, supp¢ < [~ N, N]. Hence for j > N, ¢ (j) = 0 and /) (j) = 0.

We have (p(,lj) (j) = @ (j) as n — co. Then

N N
. . g T
lim ¢u, ) =nlggo]z:121<p,{ €) :jzzlzfq)”’(]) = (u1,9)

We deduce that u, is a distribution.

. ug is not a distribution. In fact it is not even a linear functional:

(u3,2¢) = (2¢(0))* = 4¢(0)* = 4 (uz, @) # 2 {uz, @)

for ¢ € 2 (R) where (us, 2¢) #0. O



