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Personal Conventions: N denotes the set of non-negative integers. Z+ denotes the set of positive integers.

I attempted Question 1 to 5. Q5(i) is not fully solved.

Question 1

Define ¡ :R!R by

¡(x) =
(

e°
1
x if x > 0

0 if x ∑ 0

Show that ¡ is C1, and deduce that

√(x) =¡(2(1°x))¡(2(1+x))

belongs to D(R). Does the restriction to (°1,1), √
ØØ
(°1,1), belong to D(°1,1)? Calculate the Taylor series for ¡ about 0 (note:

not for √ ). Does the series converge, and if so, then what is its sum?

Proof. First we shall prove by induction on n that

¡(n)(x) =
(

p(x°1)e°x°1
, x > 0

0, x … 0

where p 2Q[x] and deg p = 2n. For n = 0 it is true. Suppose that it is true for ¡(n)(x). Then for x > 0,

¡(n+1)(x) = d
dx

≥
p(x°1)e°x°1

¥
=°t 2 d

dt

°
p(t )e°t ¢=°x°2 °

p 0(x°1)°p(x°1)
¢

e°x°1

Let q(x°1) = x°2 °
p(x°1)°p 0(x°1)

¢
. Then deg q = deg p +2 = 2(n +1). For x < 0, it is clear that ¡(n+1)(x) = 0. As x & 0,

lim
x&0

q(x°1)e°x°1 = lim
t!+1

q(t )e°t = 0

Hence ¡(n+1)(x) ! 0 as x ! 0. The derivative at x = 0:

¡(n+1)(0) = lim
x&0

¡(n)(x)
x

= lim
t!+1

t p(t )e°t = 0 = lim
x%0

¡(n)(x)
x

Hence ¡(n+1)(x) exists and is continuous on R.

We deduce that ¡ 2 C1(R).

For √(x) = ¡(2(1° x))¡(2(1+ x)), it is clear that √ 2 C1(R). Since ¡(2(1° x)) = 0 for x   1 and ¡(2(1+ x)) = 0 for x … °1,
supp√ 2 [°1,1]. Hence √ has a compact support. We deduce that √ 2D(R).

Note that √
ØØ
(°1,1) has support (°1,1), which is not compact. Then √

ØØ
(°1,1) ›D(°1,1).

We have shown that ¡(n)(0) = 0 for all n 2N. Therefore the Taylor series of ¡ at x = 0:

1X

n=0

1
n!
¡(n)(0)xn = 0

The sum converges not to ¡(x) but to 0. It implies that ¡ is not analytic near x = 0.

Question 2

In this question all functions are real-valued.

(a) Let K be a compact proper subset of the open interval (a,b). Show carefully that there exists Ω 2 D(a,b) such that
0 ∑ Ω ∑ 1 and Ω = 1 on K .

(b) Give an example of',√ 2D(R) such that max(',√),min(',√) are not smooth compactly supported test functions. Here
we define max(',√)(x) = max{'(x),√(x)} for each x and similarly for min(',√).
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Next, let u 2D(a,b). Show that there exist u1,u2 2D(a,b) with u1 ∏ 0,u2 ∏ 0 and u = u1 °u2.

(c) Generalize the last statement to n dimensions as follows. Let ≠ be a nonempty open subset of Rn and u 2D(≠). Show
that there exist u1,u2 2D(≠) with u1 ∏ 0 and u2 ∏ 0 such that u = u1 °u2

(Hint: You may for instance note that 4u = (u+1)2°(u°1)2 and if v is a cut-off function between the support of u and the
boundary of≠, then vu = u.)

Proof. (a) This is a special case of Theorem 2.11.

As K µ (a,b), let 0 < ±< 1
4

min{infK °a,b ° supK }. Let K̃ := {x 2 (a,b) : 9y 2 K |x ° y |… 2±} µ (a,b). Let

B(x) :=

8
<
:

exp
µ

1
x2 °1

∂
, |x| < 1

0, |x|  1

Let

Ω±(x) := 1

±

Z

R
B(x)dx

B
≥ x
±

¥

be the standard modifier in R. We know that Ω± 2D(R) and it is supported on B(0,±). Let

'(x) := Ω±§1K̃ =
Z

R
Ω±(x ° y)1K̃ (y)dy =

Z

K̃
Ω±(x ° y)dy

The map y 7! Ω±(x ° y) is supported on B(x,±). Hence ' is supported on

{z 2R : 9x 2 K̃ 9 y 2 B(x,±) : |y ° z|… ±} µ {z 2R : 9x 2 K |x ° z|… 3±} µ (a,b)

It is clear by Dominated Convergence Theorem that ' is smooth. Hence ' 2D(a,b). Since
Z

R
Ω± = 1 and Ω±   0, we

have 0 …'… 1 on (a,b).

For x 2 K , as y 7! Ω±(x ° y) is supported on B(x,±) µ K̃ , we have

'(x) =
Z

K̃
Ω±(x ° y)dy =

Z

R
Ω±(y)dy = 1

hence '= 1 on K .

(b) Let '(x) = B(x) and √(x) = B(x °1). Then ¡,√ 2D(R). But max{¡,√},min{¡,√} ›D(R) because they are not differen-
tiable at x = 1/2:

'(1/2) = B(1/2) = B(°1/2) =√(1/2)

So max{',√}(1/2) = min{',√}(1/2). But '0(1/2) > 0 and √0(1/2) < 0. So x = 1/2 is a local minimum of max{',√} and a
local maximum of min{',√}. If they are differentiable then by Fermat’s Lemma the derivative at x = 1/2 should be 0.

For u 2D(a,b), let v : (a,b) ! [0,1] be a cut-off function between @(a,b) and suppu. Then u = vu = v(u +1)2/4°v(u °
1)2/4. Let u1 = v(u +1)2/4 and u2 = v(u °1)2/4. Then u = u1 °u2, u1,u2   0 and u1,u2 2D(a,b).

(c) We should generalize (a) to a compact subset K of an open set≠ 2Rn . The proof is essentially the same. We define

±< 1
4

dist(K ,@≠)

and

Ω±(x) := 1

±n
Z

R
B(x)dx

B
≥ x
±

¥

The result ' is a cut-off function between K and @≠. Let v be a cut-off function between suppu and @≠. Take u1 =
v(u +1)2/4 and u2 = v(u °1)2/4.
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Question 3

Let≠ be a nonempty and open subset of Rn ,1 ∑ p <1 and f 2 Lp (≠). Show that for each "> 0 there exists g 2D(≠) such that
k f ° gkp < ".

(Hint: One approach is to do it in two steps. First choose an appropriate open subset O Ω ≠ so that h = f 1O is a good Lp

approximation of f . Then use a result from lectures.)

Proof. By Lemma 2.9, C0
c (≠) is dense in Lp (≠) so there exists a h 2 C0

c (≠) such that
∞∞ f °h

∞∞
p < "/2. By Proposition 2.7(iii),

lim
±!0

∞∞Ω±§h °h
∞∞

p = 0. Hence there exists ±> 0 such that
∞∞Ω±§h °h

∞∞
p < "/2. Hence

∞∞ f °Ω±§h
∞∞

p …
∞∞ f °h

∞∞
p +

∞∞Ω±§h °h
∞∞

p < "

By Proposition 2.7(i), Ω±§h 2 C1(≠). It is also compactly supported as h is compactly supported. Hence Ω±§h 2D(R), which
completes the proof.

Question 4

Let p, q 2 [1,1] with
1
p
+ 1

q
= 1. Show that if f 2 Lp (R), g 2 Lq (R), then f § g 2 C(R). Next, show that if p 2 (1,1), then f § g 2

C0(R), that is, f § g is continuous and ( f § g )(x) ! 0 as |x|!1. What happens when p = 1 and q =1?

Proof. Without loss of generality we assume that p 6=1.

• By the result in Question 3, there exists a sequence { fn} in C0
c (R) such that fn ! f in Lp -norm. We claim that fn§g ! f §g

uniformly. Indeed,

∞∞ fn § g ° f § g
∞∞
1 = sup

x2R

ØØØØ
Z

R
( fn ° f )(x ° y)g (y)dy

ØØØØ

…
∞∞g

∞∞
q sup

x2R

µZ

R
|( fn ° f )(x ° y)|p dy

∂1/p

(Hölder’s Inequality)

=
∞∞ fn ° f

∞∞
p

∞∞g
∞∞

q ! 0

as n !1. Hence we have the uniform convergence.

• For each fn , we claim that fn § g is uniformly continuous on R. Since fn is continuous and compactly supported, by
Heine-Cantor Theorem it is uniformly continuous on R:

8"> 0 9±> 0 8x1, x2 2R
°
|x1 °x2| < ± =) | fn(x1)° fn(x2)| < "

¢

For x1, x2 2Rwith |x1 °x2| < ±,

|( fn § g )(x1)° ( fn § g )(x2)| =
ØØØØ
Z

R

°
fn(x1 ° y)° fn(x2 ° y)

¢
g (x)dy

ØØØØ

…
∞∞g

∞∞
q

µZ

R

ØØ fn(x1 ° y)° fn(x2 ° y)
ØØp dy

∂1/p

(Hölder’s Inequality)

… "
∞∞g

∞∞
q m

°
supp fn

¢1/p

where m is the standard Lebesgue measure on R. Hence fn § g is uniformly continuous on R.

• Since f §g is the uniform limit of the sequence of continuous functions { fn §g }, we deduce that f §g is continuous on
R.

Now we consider p, q 6=1. Then there exists { fn} and {gn} in C0
c (R) such that fn ! f in Lp -norm and gn ! g in Lq -norm.

Then we have

∞∞ fn § gn ° f § g
∞∞
1 =

∞∞( fn ° f )§ gn + f § (gn ° g )
∞∞
1 …

∞∞ fn ° f
∞∞

p

∞∞g
∞∞

q +
∞∞ f

∞∞
p

∞∞gn ° g
∞∞

q ! 0

as n !1. Note that { fn § gn} is a sequence in C0
c (R). Then for " > 0 there exists N 2 N such that for all n > N , |( f § g )(x)°

( fn § gn)(x)| < " for all x 2R (since both fn § gn and f § g are continuous, the essential supremum is the supremum). Hence
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for x › supp fn , |( f § g )(x)| < ". We deduce that ( f § g )(x) ! 0 as |x|!1.

It is not the case when p = 1 and q =1. A trivial example will be f (x) = e°x2 2 L1(R) and g (x) = 1 2 L1(R). Then

( f § g )(x) =
Z+1

°1
e°t 2

dt =
p
º

So f § g does not tend to 0 as |x|!1.

Question 5

In each of the following 3 cases decide whether or not u j is a distribution:

≠
u1,'

Æ
=

1X

j=1
2° j'( j )(0),

≠
u2,'

Æ
=

1X

j=1
2 j'( j )( j ),

≠
u3,'

Æ
='(0)2

where ' 2D(R) is so that the expression makes sense.

Proof. 1. u1 is not a distribution.

First we claim that there exists a compact set K µR and a sequence {'n} µD(K ) such that

ØØhu1,'ni
ØØ=

ØØØØØ
1X

j=1
2° j'

( j )
n (0)

ØØØØØ> n
nX

j=0
sup

nØØØ'( j )
n (x)

ØØØ : x 2 K
o

We can make, for example, all derivatives '( j )(0) > 0, and make '(n+1)(0) arbitrarily large while the first n derivatives
remain bounded in the compact set K . I am not sure if it is possible, given that K is independent of n.

(In the remark after Example 3.12, a criterion of distribution is given as follows: Suppose that {x j : j 2 J } µ R has no
limit points. Then hT,'i :=

X

j2J
'(Æ j )(x j ) is a distribution of order sup

j2J
Æ j . This test fails for u1 because all derivatives are

evaluated at 0.)

Put ∏n = hu1,'ni and √n ='n/∏n . Then
nX

j=0
sup

nØØØ√( j )
n (x)

ØØØ : x 2 K
o
< 1

n

and hence
ØØØ√( j )

n (x)
ØØØ< 1/n for all x 2 K and j … n. In particular √n ! 0 in D(R). But hu1,√ni= 1 does not converge to 0.

2. u2 is a distribution.

It is clear that u2 is a linear functional. Suppose that {'n} µD(R) and ' 2D(R) such that 'n
D°! ' as n ! 1. There

exists N 2N such that supp'n , supp'µ [°N , N ]. Hence for j > N , '( j )
n ( j ) = 0 and '( j )( j ) = 0.

We have '( j )
n ( j ) !'( j )( j ) as n !1. Then

lim
n!1

hu1,'ni= lim
n!1

NX

j=1
2 j'

( j )
n ( j ) =

NX

j=1
2 j'( j )( j ) = hu1,'i

We deduce that u2 is a distribution.

3. u3 is not a distribution. In fact it is not even a linear functional:

hu3,2'i= (2'(0))2 = 4'(0)2 = 4hu3,'i 6= 2hu3,'i

for ' 2D(R) where hu3,2'i 6= 0.
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