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Question 1

Find the extremals of the functionals (assume that y is prescribed at x = a and x = b):

(a)
∫ b

a

(y2 − y′2 − 2y cos 2x) dx

(b)
∫ b

a

y′2

x3
dx

(c)
∫ b

a

(y2 + y′2 − 2y ex) dx

Solution. (a) LetL(x, y, y′) = y2−y′2−2y cos 2x and S =

∫ b

a

L dx. Theminimizer y of the action S satisfies the Euler-Lagrange

Equation:
d

dx

∂L
∂y′
− ∂L
∂y

= 0 =⇒ y′′ + y = cos 2x

The boundary conditions y(a) = y(a) and y(b) = y(b) are not inhomogeneous. We can make it homogeneous by

considering v(x) :=
y(b)− y(a)

b− a
(x− a) + y(a). Then the linear function v satisfies v(a) = y(a) and v(b) = y(b). Let

ỹ := y − v. ỹ satisfies the second order ODE with homogeneous boundary conditions:

ỹ′′ + ỹ = cos 2x− v(x), ỹ(a) = ỹ(b) = 0

For the homogeneous part, we note that y1(x) = sin(x − a) and y2(x) = sin(x − b) are two linearly independent
solutions such that y1(a) = y2(b) = 0. The Wronskian:

W (x) := y1(x)y
′
2(x)− y′1(x)y2(x) = sin(x− a) cos(x− b)− cos(x− a) sin(x− b) = sin(b− a)

Let f(x) := cos 2x− v(x). By Section 1.7 in the notes of Differential Equations II, we can write the full solution as:

ỹ(x) =

∫ x

a

f(ξ)y1(ξ)y2(x)

W (ξ)
dξ +

∫ b

x

f(ξ)y2(ξ)y1(x)

W (ξ)
dξ

=
1

sin(b− a)

(
sin(x− b)

∫ x

a

(cos 2ξ − v(ξ)) sin(ξ − a) dξ + sin(x− a)
∫ b

x

(cos 2ξ − v(ξ)) sin(ξ − b) dξ

)

in which:∫ x

a

cos 2ξ sin(ξ − a) dξ =
∫ x

a

1

2
(sin(3ξ − a)− sin(ξ + a)) dξ =

1

6
(cos 2a− cos(3x− a))− 1

2
(cos 2a− cos(x+ a))∫ b

x

cos 2ξ sin(ξ − b) dξ =
∫ b

x

1

2
(sin(3ξ − b)− sin(ξ + b)) dξ =

1

6
(cos(3x− b)− cos 2b)− 1

2
(cos(x+ b)− cos 2b)∫ x

a

v(ξ) sin(ξ − a) dξ = y(a)

∫ x

a

sin(ξ − a) dξ + y(b)− y(a)
b− a

∫ x

a

(ξ − a) sin(ξ − a) dξ

= y(a)

∫ x

a

sin(ξ − a) dξ + y(b)− y(a)
b− a

(
(ξ − a) cos(ξ − a)|ax +

∫ x

a

cos(ξ − a) dξ
)

= y(a)(1− cos(x− a)) + y(b)− y(a)
b− a

(−(x− a) cos(x− a) + sin(x− a))

= −v(x) cos(x− a) + y(a) +
y(b)− y(a)

b− a
sin(x− a)∫ b

x

v(ξ) sin(ξ − b) dξ = y(a)

∫ b

x

sin(ξ − b) dξ + y(b)− y(a)
b− a

∫ b

x

(ξ − a) sin(ξ − b) dξ

= y(a)

∫ b

x

sin(ξ − b) dξ + y(b)− y(a)
b− a

(
(ξ − a) cos(ξ − b)|xb +

∫ b

x

cos(ξ − b) dξ

)

= y(a)(cos(x− b)− 1) +
y(b)− y(a)

b− a
((x− a) cos(x− b)− (b− a)− sin(x− b))
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= v(x) cos(x− b)− y(b)− y(b)− y(a)
b− a

sin(x− b)

Substitute these expression into ỹ and we obtain:

ỹ(x) =
sin(x− b)
sin(b− a)

(
1

6
(cos 2a− cos(3x− a))− 1

2
(cos 2a− cos(x+ a)) + v(x) cos(x− a)− y(a)− y(b)− y(a)

b− a
sin(x− a)

)
+

sin(x− a)
sin(b− a)

(
1

6
(cos(3x− b)− cos 2b)− 1

2
(cos(x+ b)− cos 2b)− v(x) cos(x− b) + y(b) +

y(b)− y(a)
b− a

sin(x− b)
)

=
1

sin(b− a)

(
−1

3
(cos 2a sin(x− b)− cos 2b sin(x− a)) + 1

6
(sin(x− a) cos(3x− b)− sin(x− b) cos(3x− a))

+
1

2
(sin(x− a) cos(x+ b)− sin(x− b) cos(x+ a))− v(x) sin(b− a) + (−y(a) sin(x− b) + y(b) sin(x− a))

)
= v(x)− 1

3
cos 2x+

(
y(a) +

1

3
cos 2a

)
sin(b− x)
sin(b− a)

+

(
y(b) +

1

3
cos 2b

)
sin(x− a)
sin(b− a)

In conclusion, the solution to the original problem is given by:

y(x) = ỹ(x) + v(x) = −1

3
cos 2x+

(
y(a) +

1

3
cos 2a

)
sin(b− x)
sin(b− a)

+

(
y(b) +

1

3
cos 2b

)
sin(x− a)
sin(b− a)

(b) Let L(x, y, y′) = y′2/x3 and S =

∫ b

a

L dx. The minimizer y of the action S satisfies the Euler-Lagrange Equation:

d

dx

∂L
∂y′
− ∂L
∂y

= 0 =⇒ 2y′′

x3
= 0 =⇒ y′′ = 0

Hence y is a linear function. y satisfies the boundary conditions y(a) = y(a) and y(b) = y(b). The full solution is
given by

y(x) =
y(b)− y(a)

b− a
(x− a) + y(a)

(c) Let L(x, y, y′) = y2 + y′2 − 2y ex and S =

∫ b

a

L dx. The minimizer y of the action S satisfies the Euler-Lagrange

Equation:
d

dx

∂L
∂y′
− ∂L
∂y

= 0 =⇒ y′′ − y = − ex

For the homogeneous part, the auxiliary equation:

λ2 − 1 = 0 =⇒ λ1,2 = ±1

Then we find that y1(x) = sinh(x − a) and y2(x) = sinh(b − x) are two linearly independent solutions such that
y1(a) = y2(b) = 0.

For the particular solution, we try yp(x) = αx ex. Then

− ex = y′′p − yp = α(x+ 2) ex−αx ex = 2α ex =⇒ α = −1

2

Hence the general solution is given by

y(x) = −1

2
x ex+A sinh(x− a) +B sinh(b− x)

With the help of part (a), we can immediately write down the full solution:

y(x) = −1

2
x ex+

(
y(a) +

1

2
a ea

)
sinh(b− x)
sinh(b− a)

+

(
y(b) +

1

2
b eb
)

sinh(x− a)
sinh(b− a)
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Question 2

Find the extremals of

(a)
∫ 1

0

(y2 + y′ + y′2) dx subject to y(0) = 0, y(1) = 1

(b)
∫ 1

0

y′2

x3
dx subject to y(0) = 1, y(1) = 2

(c)
∫ 1

0

y′2 dx+ y(1)2 subject to y(0) = 1.

Solution. (a) Let L(x, y, y′) = y2 + y′ + y′2 and S =

∫ b

a

L dx. The minimizer y of the action S satisfies the Euler-Lagrange

Equation:
d

dx

∂L
∂y′
− ∂L
∂y

= 0 =⇒ 2y′′ − 2y = 0 =⇒ y′′ − y = 0

The second order ODE is linear and homogeneous. The auxiliary equation:

λ2 − 1 = 0 =⇒ λ1,2 = ±1

Hence the general solution is given by
y(x) = A ex+B e−x

Subtituting the boundary conditions y(0) = 0 and y(1) = 1:

A+B = 0 A e+B e−1 = 1

Hence A =
1

2 sinh 1
and B = − 1

2 sinh 1
. The full solution is given by y(x) =

sinhx

sinh 1
.

(b) This is a special case of Question 1.(b). The solution is given by y(x) =
2− 1

1− 0
(x− 0) + 1 = x+ 1

(c) First we assume that y(1) = η is prescribed. Let Lη(x, yη, y′η) = y′2η and Sη =

∫ b

a

Lη dx. Then the minimizer yη of

the action Sη satisfies the Euler-Lagrange Equation:

d

dx

∂L
∂y′η
− ∂L
∂yη

= 0 =⇒ y′′η = 0

The solution is linear function:

yη(x) =
y(1)− y(0)

1− 0
(x− 0) + 1 = (η − 1)x+ 1

Then the original functional becomes a function of η:∫ 1

0

y′2η dx+ y(1)2 =

∫ 1

0

(η − 1)2 dx+ η2 = 2η2 − 2η + 1

which is minimized when η =
1

2
. Hence the minimizer of the original functional is given by y = −1

2
x+ 1
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Question 3

Show that the problem of finding extremals of

J [y] =

∫ b

a

F (x, y, y′) dx

among all twice continuously differentiable functions y for which y(a) is prescribed, leads to the Euler equation

d

dx

(
∂F

∂y′

)
=
∂F

∂y

and to the natural boundary condition
∂F

∂y′

∣∣∣∣
x=b

= 0.

Find the extremal of
∫ 1

0

(
1

2
y′2 + yy′ + y′ + y

)
dx among all y with y(0) = 1.

Proof. Suppose that y is a minimizer of the functional J [y] subject to the constraint y(a) = c ∈ R. We consider the set B of all
test functions η : R → R such that supp η ⊆ [a, b] and η(a) = 0. Note that for any α ∈ R and η ∈ B, the function y + αη

satisfies the same constraint as y. Therefore we have

d

dα
J [y + αη]

∣∣∣∣
α=0

= 0

By chain rule, we expand this as:

0 =
d

dα
J [y + αη]

∣∣∣∣
α=0

=

∫ b

a

∂

∂α
F (x, y + αη, y′ + αη′)

∣∣∣∣
α=0

dx =

∫ b

a

(
η
∂F

∂y
+ η′

∂F

∂y′

)
dx

=

∫ b

a

η
∂F

∂y
dx+ η

∂F

∂y′

∣∣∣∣x=b
x=a

−
∫ b

a

η
d

dx

∂F

∂y′
dx

= η
∂F

∂y′

∣∣∣∣
x=b

−
∫ b

a

η

(
d

dx

∂F

∂y′
− ∂F

∂y

)
dx (we used the constraint η(a) = 0)

Since η ∈ B is arbitrary, we infer that y must satisfy the Euler-Lagrange Equation

d

dx

∂F

∂y′
− ∂F

∂y
= 0

with the natural boundary condition
∂F

∂y′

∣∣∣∣
x=b

= 0

Let F (x, y, y′) =
1

2
y′2 + yy′ + y′ + y. By Euler-Lagrange Equation:

d

dx
(y′ + y + 1)− (y′ + 1) = 0 =⇒ y′′ = −1

The general solution is y(x) = −1

2
x2 +Ax+B. The boundary conditions are:

y(0) = 1 =⇒ B = 1

∂F

∂y′

∣∣∣∣
x=1

= y′(1) + y(1) + 1 = 0 =⇒ −1

2
+ 2A+B = 0
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Hence A = −1

4
, B = 1. The solution is y(x) = −1

2
x2 − 1

4
x+ 1.

Question 4

Show that the Euler equation of the functional ∫ x1

x0

F (x, y, y′, y′′) dx

has the first integral Fy′ −
d

dx
Fy′′ = const if Fy ≡ 0 and the first integral F − y′

(
Fy′ −

d

dx
Fy′′

)
− y′′Fy′′ = const if Fx ≡ 0.

Proof. By Section 6.2 in the notes, the Euler-Lagrange Equation of this problem is given by

∂F

∂y
− d

dx

∂F

∂y′
+

d2

dx2
∂F

∂y′′
= 0

If
∂F

∂y
= 0, then the E-L Equation becomes:

d

dx

∂F

∂y′
− d2

dx2
∂F

∂y′′
= 0

By integrating with respect to x we find the first integral:

∂F

∂y′
− d

dx

∂F

∂y′′
= const

If
∂F

∂x
= 0, by chain rule we find

dF

dx
=
∂F

∂x
+ y′

∂F

∂y
+ y′′

∂F

∂y′
+ y′′′

∂F

∂y′′
= y′

∂F

∂y
+ y′′

∂F

∂y′
+ y′′′

∂F

∂y′′

Substitute it into the E-L Equation:

y′
∂F

∂y
− y′ d

dx

∂F

∂y′
+ y′

d2

dx2
∂F

∂y′′
= 0

=⇒ dF

dx
− y′′ ∂F

∂y′
− y′′′ ∂F

∂y′′
− y′ d

dx

∂F

∂y′
+ y′

d2

dx2
∂F

∂y′′
= 0

=⇒ dF

dx
− d

dx

(
y′
∂F

∂y′

)
+

d

dx

(
y′

d

dx

∂F

∂y′′

)
− y′′ d

dx

∂F

∂y′′
− y′′′ ∂F

∂y′′
= 0

=⇒ dF

dx
− d

dx

(
y′
∂F

∂y′

)
+

d

dx

(
y′

d

dx

∂F

∂y′′

)
− d

dx

(
y′′
∂F

∂y′′

)
= 0

By integrating with respect to x we find the first integral:

F − y′
(
∂F

∂y′
− d

dx

∂F

∂y′′

)
− y′′ ∂F

∂y′′
= const
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Question 5

Find the extremal of the functional ∫ π/2

0

(
y′2 + z′2 + 2yz

)
dx

subject to y(0) = 0, y
(π
2

)
= 1, z(0) = 0, z

(π
2

)
= 1.

Solution. Let L(x, y, y′, z, z′) = y′2 + z′2 + 2yz. The "system" has two "degrees of freedom". The corresponding Euler-Lagrange
Equations are:

d

dx

∂L
∂y′
− ∂L
∂y

= 0
d

dx

∂L
∂z′
− ∂L
∂z

= 0

which gives:

2y′′ − 2z = 0 2z′′ − 2y = 0

In matrix form it becomes: (
y′′

z′′

)
=

(
0 1

1 0

)(
y

z

)
In general, such equations can be decoupled by diagnolizing the coefficient matrix. But for this simple system, we can
decouple them by observation:

z = y′′ =⇒ z′′ = y′′′′ =⇒ y′′′′ − y = 0

This is a fourth order linear ODE. The auxiliary equation:

λ4 − 1 = 0 =⇒ λ1 = 1, λ2 = −1, λ3 = i, λ4 = −i

The general solution of y is given by y(x) = A1 cosx+A2 sinx+A3 e
x+A4 e

−x.

Hence z(x) = y′′(x) = −A1 cosx−A2 sinx+A3 e
x+A4 e

−x.

The boundary conditions y(0) = 0, y
(π
2

)
= 1, z(0) = 0, z

(π
2

)
= 1 imply that

A1 +A3 +A4 = 0 A2 +A3 e
π/2 +A4 e

−π/2 = 1 −A1 +A3 +A4 = 0 −A2 +A3 e
π/2 +A4 e

−π/2 = 1

Hence A1 = A2 = 0, A3 = −A4 =
1

2 sinh(π/2)
. The solution of y is given by y(x) =

sinhx

sinh(π/2)
and z by

z(x) =
sinhx

sinh(π/2)
.


