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Question 1. Mostly topology, but useful

i) (Warm-up lemma) Let X be a topological space. Check that ∀ topological subspace Y ⊆ X :

• Y is irreducible =⇒ Y is connected

• Y is irreducible =⇒ Y is irreducible

• Y is an irreducible component =⇒ Y is closed and connected

[Recall that irreducible component means irreducible and maximal with respect to inclusion.]

ii) Suppose X has finitely many irreducible components Xi.

We say that “Xk can be reached from Xl” if Xk ∩Xi1 �= ∅, Xi1 ∩Xi2 �= ∅, . . . , Xin ∩Xl �= ∅ for some
Xir

Prove that X is connected ⇐⇒ any irreducible component can be reached from any other.

iii) A topological space is Noetherian if it satisfies the descending chain condition for closed sets: C1 ⊇
C2 ⊇ C3 ⊇ · · · =⇒ CN = CN+1 = · · · for some N .

Prove that a Noetherian topological space has finitely many irreducible components, each containing an
open dense set �= ∅.

iv) Prove that R is a Noetherian ring =⇒ SpecR is a Noetherian topological space. (so for a Noetherian
scheme every affine open is Noetherian topological space)

Check that the converse fails for k [x1, x2, x3, · · · ] /
�
x1, x

2
2, x

3
3, . . .

�
.

v) Prove that X is a Noetherian topological space ⇐⇒ every topological subspace of X is quasi-compact
(so for a Noetherian scheme X all subspaces are quasi-compact, not just X.)

vi) Prove that X is a Noetherian scheme =⇒ X is a Noetherian topological space.

Proof. i) • Suppose that Y is connected. Then Y = Y1 � Y2 for non-empty Y1 and Y2 clopen in Y . Then by
definition Y is reducible.

• Suppose that Y is reducible. Then Y = Y1 ∪ Y2 for non-empty Y1, Y2 closed in Y . Then Y =

(Y ∩Y1)∪(Y ∩Y2). By the definition of subspace topology, both Y ∩Y1 and Y ∩Y2 are closed in Y .
Moreover they are non-empty. Suppose that Y ∩ Y1 = ∅. Then Y ⊆ Y2 and hence Y ⊆ Y2 � Y .
This is a contradiction. We deduce that Y is reducible.

• If Y is irreducible, by the previous result Y is irreducible. In particular if Y is an irreducible
component then it is closed. We have shown that it is conencted.

ii) If X is disconnected, then it is clear that an irreducible component cannot reach another irreducible
component in another connected component.

Conversely, suppose that X1 and X2 are two irreducible components of X that cannot be reacher from
each other. Let

Ui :=
�

{X : X irreducible component that can be reached from Xi}

We claim that U1 ∪ U2 is not connected. This is clear, as Ui is non-empty and closed in X, and
U1 ∩ U2 = ∅. Hence X is disconnected.

iii) Suppose that X is a Noetherian topological space. If {Xi}i∈N is an infinitely set of irreducible com-
ponents of X, then

Y1 � Y2 � Y3 � · · ·
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is a strictly descending chain of closed subspaces of X, where Yk =
�k

i=0Xi. It follows that X has
finitely many irreducible components.

Let X1, ..., XN be the irreducible components of X. Let Z1 := X \ (�N
n=2Xn) ⊆ X1. Then Z1 is open

and non-empty. If Z1 is not dense in X1, then X1 = Z1∪ (X1 \Z1) is reducible, which is contradictory.
Hence X1 contains a non-empty open dense subset. It is similar for X2, ..., XN .

iv) Suppose that SpecR is not a Noetherian topological space. Then there is a strictly descending chain
of closed subsets:

V(p1) � V(p2) � V(p3) � · · ·
Then we have an ascending chain of ideals of R:

p1 � p2 � p3 � · · ·

Hence R is not Noetherian.

Let R := k[x1, x2, x3, ...]/
�
x1, x

2
2, x

3
3, ...

�
. We note that R is not Noetherian, because it has a strictly

ascending chain of ideals
�x2� � �x2, x3� � �x2, x3, x4� � · · ·

However, we shall prove that SpecR is a Noetherian topological space. Suppose that p ∈ SpecR. Note
that xn is nilpotent for all n ∈ N. Then xn ∈ Nil(R) ⊆ p for all n ∈ N. Hence �x2, x3, ...� ⊆ p. But
�x2, x3, ...� is maximal. We deduce that p = �x2, x3, ...� and SpecR = {�x2, x3, ...�}. Since SpecR is a
finite set, trivially it is a Noetherian topological space.

v) Suppose that X is not a Noetherian topological space. There is a strictly descending chain of closed
subsets:

Y1 � Y2 � Y3 � · · ·
which corresponds to a strictly ascending chain og open subsets:

Y c
1 � Y c

2 � Y c
3 � · · ·

Let Y :=
�∞

n=1 Y
c
n . Then {Y c

n}∞n=1 is an open cover of Y with no finite subcover. Hence Y is not
compact.

Conversely, suppose that X has a subspace Y which is not compact. Let {Yi}i∈I be an open cover
of Y with no finite subcover. We construct a sequence {Yin}n∈N inductively as follows. First pick
arbitrary i0 ∈ I. Given {Yi0 , ..., Yik}, since this does not cover Y , we can find ik+1 ∈ I such that
Yik+1

�⊆ �k
j=1 Yij . So we have a strictly ascending chain

Yi1 � Yi2 � Yi3 � · · ·

Each Yin is open in Y , so Yin = Y ∩Xn for some Xn open in X. Then

X1 � X2 � X3 � · · ·

and hence
Xc

1 � Xc
2 � Xc

3 � · · ·
This is a strictly descending chain of closed subsets. We deduce that X is not a Noetherian topological
space.

vi) Suppose that X is a Noetherian scheme. Let {U1, ..., Um} be an affine open cover of X. Ui
∼= SpecRi

for some Noetherian ring Ri. By (iv), Ui is a Noetherian topological space. Let Y ⊆ X be a subscheme.
Then Y ∩ Ui ⊆ Ui. By (v), Y ∩ Ui is compact. Then Y =

�m
i=1(Y ∩ Ui) is compact. It follows that

every subspace of X is compact. By (v), X is a Noetherian topological space.



3

Question 2

i) Check that A2
k = Spec k[x, y] is a variety (k is an algbraically closed field)

[Recall that a variety is a scheme which is integral, separated, finite type over Spec k.]

ii) Show that the open subscheme A2
k \ {0} is a variety which is not affine.

[Hint. You may assume as known that being “finitely generated as a k-algebra” is affine-local: see notes
Sec 3.2.]

iii) Show that a variety which is affine (being the spectrum of a ring) is an affine variety, i.e. isomorphic
to an integral closed subscheme of An

k for some n.

iv) Prove that (X,OX) is a variety =⇒ X is a Noetherian scheme.

v) Glue two copies of A1
k = Spec k[x] along the basic open set A1

k \ {0} = Dx = Spec k
�
x, x−1

�
by the

isomorphism Spec k
�
s, s−1

� ∼= Spec k
�
t, t−1

�
given by s �→ t. Show that the glued scheme is not

separated. (compare notes Sec 5.3.)

[Hint: “equiliser”]

vi) Let (X,OX) be a variety, and Z ⊆ X is an irreducible subspace.

[Remark. Irreducibility is not vital if we allow varieties to be reducible.]

In notes Sec 5.5 you find the definition of what it means tor Z to be locally closed subscheme of X
and how we construct a canonical induced reduced scheme structure OZ .

• Prove that Z is locally closed =⇒ (Z,OZ) variety. [Hint. 2(iv), 1(vi), 1(v) may help.]

• If you define OZ as suggested in Sec 5.5 for Z ⊆ X irreducible subspace, prove that (Z,OZ) variety
=⇒ Z ⊆ X is locally closed

Suggestion. First reduce to affine case Z = SpecS,X = SpecR by picking SpecR ⊆ X of type
open ∩ closed. Now we want to find an open set in Z such that the generating global sections over
k come from sections on open ⊆ X. At the end, you may need to check SpecS∩SpecRf = SpecSf

(Sf = S ⊗R Rf via ϕ# : R → S)

Proof. i) Let us unwrap the definitions.

• (X,OX) is an integral scheme if OX(U) is an integral domain for all open U ⊆ X. In Question 3
of Sheet 2, we have proven that SpecR is an integral scheme if and only if R is an integral domain.
Since k[x, y] is an inetgral domain, A2

k is an integral scheme.

• X is separated over k, if the canonical morphism f : X → Spec k is separated, which means that
the diagonal map Δ : X → X×Spec kX is a closed immersion. A closed immersion f : X → Y is a
morphism which is an isomorphism onto a closed subscheme Z ⊆ Y . A closed subscheme Z ⊆ Y

is a closed subset such that j∗OZ
∼= OY /J for some quasi-coherent sheaf of ideals J on Y . A sheaf

of ideals J is quasi-coherent if J is exhibited as the kernel of OY → j∗OZ , where j : Z → Y is the
inclusion.

In this case X = A2
k is affine. So Δ : X → X×Spec kX is induced by the k-algebra homomorphism

ϕ : k[x, y]⊗k k[x, y] → k given by f ⊗ g �→ fg. ϕ is surjective with

kerϕ = �f ⊗ 1− 1⊗ f : f ∈ k[x, y]�

Then ΔX/k = imSpecϕ = V(kerϕ) ⊆ X ×Spec k X. As V(kerϕ) is a closed affine subset of the
affine scheme X ×Spec k X, it is cannonically a closed subscheme, because the ideal sheaf Okerϕ

is quasi-coherent. Moreover, Δ is an isomorphism onto V(kerϕ). Hence X = A2
k is separated
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over k. The same method shows that the morphism Specα : SpecR → SpecS induced by the
monomorphism α : S → R is always separated.

• X is of finite type over k, if the canonical morphism f : X → Spec k is of finite type, which
means that the morphism is both quasi-compact and locally of finite type. f : X → Spec k is
quasi-compact if the pre-images of all affine open sets are quasi-compact. f : X → Spec k is locally
of finite type if for all affine open U ⊆ X and V ⊆ Spec k with f(U) ⊆ V , the ring homomorphism
f# : OSpec k(V ) → OX(U) is of finite type. In the lectures we have seen that for f being locally
of fintie type, it suffices to take any affine open cover.

In the case X = A2
k, f : SpecX → Spec k is induced by the inclusion ι : k �→ k[x, y]. Note that

Spec k is a singleton as a set, and k[x, y] is quasi-compact, so f is trivially quasi-compact. Both
X and Spec k are affine, and the map ι# on Spec k is exactly ι. We know that k[x, y] is a finitely
generated k-algebra. So X is finite type over k.

In summary, A2
k is an integral, separated, fintie type scheme over k. This proves that A2

k is a variety.

ii) We claim that an irreducible open subscheme Y of a variety X is also a variety.

• We have seen in the lectures that being a reduced ring is a stalk-local property. So an open
subscheme of a reduced scheme is also reduced. Then an irreducible open subscheme of X is
integral by Sheet 2.

• By a remark in the notes, an open subscheme of a separated scheme over k is also separated over
k.

• Since X is of finite type over k, X is quasi-compact. Let {X1, ..., Xn} be an affine open cover of
X. Let Yi := Y ∩ Xi. So Yi is an open subscheme of the affine scheme Xi

∼= SpecRi, where Ri

is of finite type over k. Then Yi has an open cover {Df1 , ..., Dfm} for some f1, ..., fm ∈ Ri. Each
Dfj

∼= Spec(Ri)fj , where (Ri)fj is of finite type over k. We have seen in the lectures that being a
finitely generated k-algebra is an affine-local property. Therefore Yi is locally of finite type. But
also Y =

�n
i=1 Yi, so Y is also locally of finite type.

Finally, Y is a finite union of some affine open subsets, which are quasi-compact. Therefore Y is
also quasi-compact. Hence Y is of finite type over k.

This concludes the proof of the claim.

Since A2
k \ {0} is an open subscheme of A2

k, it is a variety. We shall prove that Y := A2
k \ {0} is not

affine by proving that OY (Y ) = k[x, y] (which is in fact proven in C3.4 Algebraic Geometry).

We note that A2
k \ {0} = Dx ∪Dy for x, y ∈ k[x, y]. To see this, we simply have

p ∈ Dx ∪Dy ⇐⇒ x /∈ p ∨ y /∈ p ⇐⇒ p �= �x, y� ⇐⇒ p ∈ A2
k \ {0}.

We have OA2
k
(Dx) = k[x, y]x = k[x, y, x−1] and OA2

k
(Dy) = k[x, y]y = k[x, y, y−1]. By uniqueness of

the sheaf, we must have

OA2
k\{0}(A

2
k \ {0}) = OA2

k
(A2

k \ {0}) = OA2
k
(Dx) ∩OA2

k
(Dy) = k[x, y]

If A2
k \ {0} is affine, then A2

k \ {0} ∼= Spec k[x, y] = A2
k, which is impossible. Hence A2

k \ {0} is not an
affine variety.

iii) Suppose that X = SpecR is a variety. By definition, we know that R is of finite type over k. There
exists a surjection ϕ : k[x1, ..., xn] → R. Then Specϕ : X → An

k is a closed immersion by definition.
Hence X is isomorphic to an closed subscheme of An

k . Since X is a variety, X is integral. We deduce
that X is an affine variety.
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iv) Since X is a variety, X is quasi-compact. So we only need to show that X is locally Noetherian, which
is an affine-local property. For affine open set U ⊆ X such that U ∼= SpecR, we know that R is a of
finite type over k. We have a short exact sequence of k-algebras

0 kerϕ k[x1, ..., xn] R 0
ϕ

Since k[x1, ..., xn] is Noetherian by Hilbert basis theorem, so is R. We conclude that X is a Noetherian
scheme.

v) Let X := A1 ∪A1\{0} A1 be the glued scheme. Suppose that X is separated. We look at the two
affine open sets U1, U2 in X isomorphic to A1 = Spec k[x], their intersection is U1 ∩ U2

∼= A1 \ {0} =

Spec k[x, x−1]. By Question 3.(iv) (or a claim in the notes), the multiplication map

m : OX(U1)⊗k OX(U2) → OX(U1 ∩ U2)

is surjective. In fact m is the k-algebra homomorphism m : k[x] ⊗k k[x] → k[x, x−1], which is clearly
not surjective because x−1 /∈ imm. Hence X is not separated.

vi) • Suppose that Z is locally closed. We know that Z is open in Z. We claim that the unique induced
reduce subscheme structure on Z ⊆ X makes Z a subvariety of X. Then it follows from (ii) that
Z is a variety.

–

Question 3

Let f : X → B be a morphism of schemes.

i) f is called an immersion (or locally closed immersion) if f is the composition X → U → B, where
X → U is a closed immersion and U → B is an open immersion.

Show that an immersion is a closed immersion ⇐⇒ f(X) ⊆ B closed set.

[Hint. For ⇐= : glue the ideal sheaf of X ϕ→ U with OX |B\ϕ(X), and check the quasi-coherence.]

ii) Show that ΔX/B ⊆ X ×B X is closed if B and X affine (notation of notes Sec 5.3 )

iii) Show that ΔX/B is an immersion.

[Hence f is separated ⇐⇒ ΔX/B is a closed immersion ⇐⇒ ΔX/B is a closed set.]

iv) We say that U, V ⊆ X are “nice” if U, V, U ∩V are affine open sets and OX(U)⊗ZOX(V ) → OX(U ∩V )

is surjective.

• Suppose f is separated. Prove that for all affine open U, V ⊆ X such that f(U), f(V ) are contained
in an affine open subset of B, U, V are nice.

• Suppose that there exists an open cover X =
�
Ui such that for all x, y ∈ X with f(x) = f(y),

there are nice Ui, Uj with x ∈ Ui, y ∈ Uj and f(Ui), f(Uj) are subsets of an affine open set of B.
Prove that f is separated.

[For B = Spec k: (∃ open cover X =
�
Ui, all Ui, Uj nice) =⇒ (f separated) =⇒ (all affine opens

U, V are nice)]

v) Show that Pn
k is separated using (iv) (k any field). Deduce that Pn

k is a variety.

Show that projective varieties (integral closed subschemes of Pn
k) and quasi-projective varieties

(irreducible open subschemes of a projective variety) are varieties.
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Proof. i) We propose the follow lemma:

A morphism f : (X,OX) → (Y,OY ) is a closed immersion if and only if f is a homeomorphism
onto the closed subset f(X) ⊆ Y and f#

x : OY,f(x) → OX,x is surjective for all x ∈ X.

Given this lemma, the proof of (i) is straightforward. “ =⇒ ” is just the definition of a closed immersion.
For “ ⇐= ”, since f is an immersion we have f#

x = ψ#
ϕ(x) ◦ ϕ

#
x , where ψ#

ϕ(x) : OB,f(x) → OU,ϕ(x) is an

isomorphism, and ϕ#
x : OU,ϕ(x) → OX,x is a surjection. Hence f#

x is surjective for all x ∈ X. By the
lemma we deduce that f is a closed immersion.

ii) Suppose that X ∼= SpecR and B ∼= SpecA for some rings R and A. Then the map Δ : X → X ×B X

is induced from the A-algebra homomorphism ϕ : R⊗A R → R given by r ⊗ s �→ rs. So Δ = Specϕ :

SpecR → Spec(R ⊗A R). We claim that ΔX/B = V(kerϕ) = V(�r ⊗ 1− 1⊗ r : r ∈ R�). This is
immediate from that R ∼= (R⊗AR)/ kerϕ. So ΔX/B is closed in Spec(R⊗AR) ∼= X ×B X. Moreover,
the morphism Δ is a closed immersion.

iii) Let {Ui}i∈I be an affine cover of X. (With possible refinement of this cover) for each Ui, let Vi be an
affine open of B such that f(Ui) ⊆ Vi. Then we know that each Ui ×Vi Ui is affine open in X ×B X.
Let Y :=

�
i∈I Ui ×Vi Ui. Then there is a canonical open immersion Y → X ×B X. It is clear that

Δ maps X into Y . We need to show that this is a closed immersion. But by (ii) we already know
that ΔUi/Vi

: Ui → Ui ×Vi Ui is a closed immersion, and that {Ui ×Vi Ui}i∈I is an affine open cover for
Y . By the notes we deduce that Δ : X → Y is a closed immersion. Hence Δ : X → X ×B X is an
immersion.

iv) • Let f : X → B be separated. Suppose that U ∼= SpecR and V ∼= SpecS. Suppose that
f(U), f(V ) ⊆ C, where C ∼= SpecA is affine open in B. Then U ×B V ∼= U ×C V is affine in
X ×B X. In particular, we have

OX×BX(U ×B V ) ∼= OX(U)⊗A OX(V ) ∼= R⊗A S

On the other hand, we note that U ∩ V = Δ−1
X/B(U ×B V ). Since ΔX/B is a closed immersion, we

have
U ∩ V ∼= ΔX/B(U ∩ V ) = ΔX/B(Δ

−1
X/B(U ×B V )) = ΔX/B(X) ∩ (U ×B V )

Since ΔX/B(X) is closed in X×BX, then U ∩V is isomorphic to a closed subset of U ×B V . Since
U ×B V ∼= Spec(R ⊗A S) is affine, U ∩ V is also affine, and we have U ∩ V ∼= Spec((R ⊗A S)/I)

for some ideal I of R⊗A S. In particular we have a surjective A-algebra homomorphism

OX×BX(U ×B V ) → OX(U ∩ V )

Finally, since A is naturally a Z-algebra (i.e. a ring), we have the canonical surjective ring
homomorphism

OX(U)⊗Z OX(V ) → OX(U)⊗A OX(V )

Composing the maps above we obtain a surjective ring homomorphism

OX(U)⊗Z OX(V ) → OX(U ∩ V )

Therefore U, V are nice.

• Since for each Ui and Uj there exists an affine open C of B such that f(Ui), f(Uj) ⊆ C, then
Ui ×B Uj

∼= Ui ×C Uj is affine open in X ×B X. X ×B X has an affine cover {Ui ×B Uj}i,j∈I by
the given assumption. Note that Δ−1

X/B(Ui ×B Uj) = Ui ∩ Uj . Since Ui, Uj are nice, we have a
surjection

OX(Ui)⊗Z OX(Uj) → OX(Ui ∩ Uj)

If C ∼= SpecA, then the above map is A-bilinear, and hence factors through OX(Ui)⊗AOX(Uj) ∼=
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OX×BX(Ui×B Uj). Hence we have a surjection OX×BX(Ui×B Uj) → OX(Ui∩Uj). Hence ΔX/B :

Ui ∩ Uj → Ui ×B Uj is a closed immersion. By the notes we conclude that ΔX/B : X → X ×B X

is a closed immersion.

v) Recall from Question 1 of Sheet 2 that Pn
k =

�n
i=0 Ui where each Ui

∼= An
k = Spec k[x1, ..., xn].

The pairwise intersection Ui ∩ Uj
∼= SpecRij , where Rij is the 0th grading of the ring of fractions

S−1k[x0, ..., xn], S is the multiplcative set generated by xi, xj . Next we look at the multiplication
homomorphism between the global sections of affine sets:

ϕ : OX(Ui)⊗k OX(Uj) → OX(Ui ∩ Uj)

Recall that OX(Ui) = Ri = k

�
x0
xi

, ...,
�xi
xi
, ...,

xn
xi

�
and OX(Ui ∩ Uj) = Rij = Ri

�
xi
xj

�
. Note that

xi/xj ∈ Rj . Every element in Rij takes the form
��

m=0 am(xi/xj)
m for am ∈ Ri. Then

��

m=0

am(xi/xj)
m = ϕ

�
��

m=0

am ⊗ (xi/xj)
m

�

So ϕ is surjective. We deduce that {U0, ..., Un} is an open cover of Pn
k which is pairwise “nice”. Using

the notation from (iv), B = Spec k is a singleton. The conditions on the nice affine open cover are
satisfied trivially. Hence Pn

k is separated over k.

Checking the remaining conditions is easy. We define Pn
k by gluing finitely many copies of An

k . Since
An
k is quasi-compact, reduced, and locally of finite type, so is Pn

k . It remains to check that Pn
k is

irreducible. In fact we have the following topological fact:

Suppose that X has an open cover {Ui}i∈I of irreducible spaces such that Ui ∩ Uj �= ∅ for all
i, j ∈ I. Then X is irreducible.

Suppose that X is reducible. There are non-empty open sets V,W such that V ∩ W = ∅. We may
assume that Ui ∩ V �= ∅ and Uj ∩W �= ∅. Note that

Ui ∩ Uj ∩ V ∩W = (Ui ∩ Uj ∩ V ) ∩ (Uj ∩W ) = (Ui ∩ V ) ∩ (Ui ∩ Uj) ∩ (Uj ∩W )

Since Ui is irreducible, we have (Ui ∩ V ) ∩ (Ui ∩ Uj) �= ∅; since Uj is irreducible, we have (Ui ∩ Uj ∩
V ) ∩ (Uj ∩W ) �= ∅. This contradicts that V ∩W = ∅. Hence X is irreducible.

Now since each Ui
∼= An

k in Pn
k is irreducible, and Ui∩Uj is non-empty, we deduce that Pn

k is irreducible.
This finishes the proof that Pn

k is a variety.

vi) Let X ⊆ Pn
k be a projective variety. By definition it is an integral closed subscheme of Pn

k . So it is
quasi-compact and locally of finite type. Hence Pn

k is of finite type over k. We need to prove that X

is separated. More generally, we would like to prove that

A closed subscheme X of a separated scheme Y (over any base scheme B) is separated.

By (iii) it suffices to show that ΔX/B(X) is closed in X ×B X. This follows from that

ΔX/B(X) = ΔY/B(Y ) ∩ (X ×B X)

and that ΔY/B(Y ) is closed in Y ×B Y .

We conclude that a projective variety is a variety.

For a quasi-projective variety, since it is an irreducible open scheme of a projective variety, by Question
2.(ii), it is also a variety.
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Question 4

Fact. Pn
k is complete (i.e. proper over k). In this exercise we work over an algebraically closed field k.

i) In notes, we showed that A1 is not complete because A1 × A1 ⊇ V(xy − 1) → A1 fails the universally
closed condition. Why is this not a problem for P1 if consider P1 × A1 → A1?

ii) Let C ⊆ X be a closed subscheme. Prove that X is complete =⇒ C is complete.

[Campare in topology: a closed subset of a compact space is compact ]

[So the fact at the beginning implies also that all projective vorieties are complete.]

iii) Let f : X → Y be a morphism of schemes, where X is universally closed and Y is separated (Hint.
graph). Show that im f ⊆ Y (use f∗OX on im f to get scheme) is closed and universally closed

[Compare topology: the image of a continuous map from a compact space to a Hausdorff space is closed
and compact.]

iv) Let X be a complete variety. Show that s ∈ Γ(X,OX) constant.

[Hint. Γ(X,OX) = Mor(X,A1) see Sec 2.3 notes.]

v) Deduce that affine varieties (�= point, ∅) are never complete, and that the only global sections of a
projective voriety X are constant morphisms X → A1.

Proof. Throughout the question, X ×k Y is short for X ×Spec k Y .

i) The universally closed condition does not fail because V(xy − 1) ⊆ A1
k ×k A1

k is closed in A1
k ×k A1

k but
not in P1

k ×k A1
k.

ii) Suppose that X is a complete variety. We need to prove that C → Spec k is universally closed. Let
g : Y → Spec k be any morphism. Since X is universally closed, we know that f : X → Spec k is
closed, and we have the commutative diagram as below, where �f : X ×k Y → Y is closed.

X ×k Y X

Y Spec k

π

�f
g

f

Let i : C → X be the closed immersion. The projection C ×k Y → C factors through X ×k Y via the
closed immersion j : C×kY → X×kY and the projection π : X×kY → X. We have the commutative
diagram:

C ×k Y X ×k Y X

Y Spec k

π

�f
g

f

j

�f ◦ j

Since f : X → Spec k is closed, the induced map C → Spec k is also closed. The composite map �f ◦ j
is closed because both �f and j are closed. The diagram implies that C is universally closed. Hence C

is a complete subvariety of X.

iii) First we prove that im f is closed. Let Γf : X → X×kY be the graph of f : X → Y . f : X → Y factors

as X X ×k Y Y
Γf π . Since Y is separated, a claim from the notes shows that Γf is a closed

immersion. In particular Γf (X) ⊆ X ×k Y is closed. Since X is universally closed, π : X ×k Y → Y

is closed. Then im f = π ◦ Γf (X) is closed.

Next we prove that im f is universally closed over k (for this part I think the separatedness of Y is
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unnecessary). Let α : X → Spec k and β : im f → Spec k be the morphisms. Let g : Z → Spec k be
any morphism. We look at the commutative diagram of base changes:

X ×k Z Z im f ×k Z

X Spec k im f

�α

α

πX g πY
�β
β

�f

f

f : X → im f is surjective, then so is �f : X ×k Z → im f ×k Z. Let C ⊆ im f ×k Z be a closed subset.
Then �β(C) = �α( �f−1(C)) is closed because �f is surjective and continuous, and α is closed. Hence �β is
a closed map. We deduce that im f is universally closed over k.

iv) We know that A1
k = Spec k[x]. From Example 1 of Section 2.3 of the notes, we have a bijection

Mor(X,A1
k) ←→ Homk(k[x],OX(X)) ∼= OX(X)

Since X is complete, it is universally closed. We know that A1
k is separated. Then for any morphism

f : X → A1
k, by (iii) im f is closed and universally closed in A1

k. Since X is irreducible, so is im f .
Then we find that im f = V(x− a) for some a ∈ k (this is a singleton on the affine line). Hence
Γ(X,OX) = OX(X) ∼= k. The global sections are constant morphisms on X.

v) Suppose that Y ⊆ An
k is an affine variety with card (Y ) > 1. We take two distinct closed points

a = V(�x1 − a1, ..., xn − an�) and b = V(�x1 − b1, ..., xn − bn�) in Y . We may assume that ai �= bi for
some i. Then xi ∈ OY (Y ) is a non-constant global section. By (iv), Y is not complete.

Suppose that X is a projective variety. We claim that X is complete. Since X is an integral closed
subscheme of some Pn

k , by (ii) it suffices to prove that Pn
k is complete. (I don’t know if this proof is

examinable. It is not shown in the notes. In Hartshorne this follows from Theorem II.4.9, which is a
corollary of the valuation criterion of properness. So I choose not to go into details here...) Now
by (iv), we know that the global sections of X are constant morphisms.

Question 5

Note that any “commutative diagram” in a category C can be thought of as a functor F : I → C where the
objects of I are the positions i in the diagram (where you place some object F (i) = Ci ∈ C), the morphisms of
I are the arrows of the diagram (together with all identity morphs i → i and composites)

i) What is the functor of points interpretation of lim←−, lim−→? (Hint. for lim−→ consider Iop and h∗ not h∗)

ii) Explain briefly why the product, fibre product, gluing of sheaves are limits, and the coproduct, pushout,
gluing of schemes are colimits (e.g. every scheme = lim−→ of its affine opens)

iii) Suppose f, g are adjoint functors. Show that left adjoints commute with colimits, right adjoints commute
with limits.


