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Question 1. Mostly topology, but useful
i) (Warm-up lemma) Let X be a topological space. Check that V topological subspace Y C X :
e Y isirreducible = Y is connected
e Y is irreducible = Y is irreducible
e Y is an irreducible component = Y is closed and connected
|Recall that irreducible component means irreducible and mazimal with respect to inclusion. |
ii) Suppose X has finitely many irreducible components X;.

We say that “Xy can be reached from X;” if Xp N Xy, # @, X, N X;, # 9,...,X;, N X; # D for some
X
Prove that X is connected <= any irreducible component can be reached from any other.

iii) A topological space is Noetherian if it satisfies the descending chain condition for closed sets: Cy 2
Co 203D -+ = Cny=Cny1 =" for some N.

Prove that a Noetherian topological space has finitely many irreducible components, each containing an
open dense set # &.

iv) Prove that R is a Noetherian ring = Spec R is a Noetherian topological space. (so for a Noetherian
scheme every affine open is Noetherian topological space)

Check that the converse fails for k [x1, z9, 23, -]/ (iUl,LU%,xg, . ) )

v) Prove that X is a Noetherian topological space <= every topological subspace of X is quasi-compact
(so for a Noetherian scheme X all subspaces are quasi-compact, not just X .)

vi) Prove that X is a Noetherian scheme = X is a Noetherian topological space.

Proof. i) e Suppose that Y is connected. Then Y = Y7 UY; for non-empty Y7 and Y3 clopen in Y. Then by
definition Y is reducible.

e Suppose that Y is reducible. Then Y = Y; U Y, for non-empty Y7, Y5 closed in Y. Then Y =
(YNY1)U(Y NY3). By the definition of subspace topology, both Y NY; and Y NY5s are closed in Y.
Moreover they are non-empty. Suppose that Y NY; = @j? hen Y C Y5 and hence Y C Y, C Y.
This is a contradiction. We deduce that Y is reducible.

e If Y is irreducible, by the previous result Y is irreducible. In partiyzﬁar if Y is an irreducible
component then it is closed. We have shown that it is conencted.

ii) If X is disconnected, then it is clear that an irreducible component cannot reach another irreducible
component in another connected component.

Conversely, suppose that X1 and X are two irreducible components of X that cannot be reacher from
each other. Let

U; = U {X: X irreducible component that can be reached from X;}

We claim that U; U Us is not connected. [ This'is clear, as U; is non-empty and closed in X, and
Ui NU; = @. Hence X is disconnected.

iii) Suppose that X is a Noetherian topological space. If {X;};cn is an infinitely set of irreducible com-

K22
|

/]
)<0 VX/’ Yg‘u)g MK& hv\“

ponents of X, then



iv)

vi)

is a strictly descending chain of closed subspaces of X, where Y = U?:o X;. It follows that X has
finitely many irreducible components. <

Let X1, ..., Xn be the irreducible components of X. Let Z; := X'\ (UnN:2 Xp) € Xj. Then Z; is open
and non-empty. If Z; is not dense in Xj, then X; = Z1U (X7 \ Z1) is reducible, which.is contradictory.
Hence X7 contains a non-empty open dense subset. It is similar for Xo, ..., Xn.

Suppose that Spec R is not a Noetherian topological space. Then there is a strictly descending chain
of closed subsets:

V(p1) 2 V(p2) 2 V(p3) 2 -

Then we have an ascending chain of ideals of R:

Hence R is not Noetherian. \/

Let R := klx1,x2,x3,...]/ <x1, z3, 73, > We note that R is not Noetherian, because it has a strictly
ascending chain of ideals
<x2> g <x27x3> _,C¢_ <I’2,Z’37$4> g e

However, we shall prove that Spec R is a Noetherian topological space. Suppose that p € Spec R. Note
that x,, is nilpotent for all n € N. Then z,, € Nil(R) C p for all n € N. Hence (x2,z3,...) C p. But
(x9,x3,...) is maximal. We deduce that p = (2, x3,...) and Spec R = {(z2,x3,...)}. Since Spec R is a
finite set, trivially it is a Noetherian topological space.

Suppose that X is not a Noetherian topological space. There is a strictly descending chain of closed
subsets:
Yi2Y2Ys2 -

which corresponds to a strictly ascending chain og open subsets:
YWCYS Y5 G-

Let YV := (U2, Y,’. Then {Y,(}7°, is an open cover of ¥ with no finite subcover. Hence Y is not

compact. \/

Conversely, suppose that X has a subspace Y which is not compact. Let {Y;};cr be an open cover
of Y with no finite subcover. We construct a sequence {Y;, },en inductively as follows. First pick
arbitrary ig € I. Given {Yj,,...,Y;, }, since this does not cover Y, we can find ixy; € I such that
Yieo € U§:1 Yi;. So we have a strictly ascending chain

Yvh gYVngvlsg
Each Y;, isopen in Y, so Y;, =Y N X, for some X,, open in X. Then

X1 G Xo G X3 & -ee

X{2X52X52 ./

This is a strictly descending chain of closed subsets. We deduce that X is not a Noetherian topological

and hence

space.

Suppose that X is a Noetherian scheme. Let {Uj, ..., Up,} be an affine open cover of X. U; = Spec R;
for some Noetherian ring R;. By (iv), U; is a Noetherian topological space. Let Y C X be a subscheme.
Then Y NU; C U;. By (v), Y NU; is compact. Then Y = U=, (Y NU;) is compact. It follows that
every subspace of X is compact. By (v), X is a Noetherian topological space. O



Question 2

i)

i)

iii)

iv)

vi)

Proof.

Check that A? = Speck[x,y] is a variety (k is an algbraically closed field)
[Recall that a variety is a scheme which is integral, separated, finite type over Speck.|
Show that the open subscheme A2 \ {0} is a variety which is not affine.

[Hint. You may assume as known that being “finitely generated as a k-algebra” is affine-local: see notes
Sec 3.2.]

Show that a variety which is affine (being the spectrum of a ring) is an affine variety, i.e. isomorphic
to an integral closed subscheme of A} for some n.

Prove that (X, Ox) is a variety = X is a Noetherian scheme.

Glue two copies of A} = Speck[z] along the basic open set A} \ {0} = D, = Speck [z,z™!] by the
isomorphism Speck [5,5‘1} & Speck [t,t_l] given by s — t. Show that the glued scheme is not
separated. (compare notes Sec 5.3.)

[Hint: “equiliser”)
Let (X,Ox) be a variety, and Z C X is an irreducible subspace.
[Remark. Irreducibility is not vital if we allow varieties to be reducible.

In notes Sec 5.5 you find the definition of what it means tor Z to be locally closed subscheme of X
and how we construct a canonical induced reduced scheme structure Oy.

e Prove that Z is locally closed = (Z,Oy) variety. |Hint. 2(iv), 1(vi), 1(v) may help.]|

e If you define Oy as suggested in Sec 5.5 for Z C X irreducible subspace, prove that (Z, Oyz) variety
= Z C X is locally closed

Suggestion. First reduce to affine case Z = Spec.S, X = Spec R by picking Spec R C X of type
open N closed. Now we want to find an open set in Z such that the generating global sections over
k come from sections on open C X. At the end, you may need to check Spec SNSpec Ry = Spec Sy
(Sf =S ®r Ry Uia(p# :R—S)

i) Let us unwrap the definitions.

e (X,0Ox) is an integral scheme if Ox(U) is an integral domain for all open U C X. In Question

3

of Sheet 2, we have proven that Spec R is an integral scheme if and only if R is an integral domain.
Since k[z,y] is an inetgral domain, A? is an integral scheme. "

e X is separated over k, if the canonical morphism f : X — Speck is separated, which means that
the diagonal map A : X — X Xgpect X is a closed immersion. A closed immersion f: X — Y isa
morphism which is an isomorphism onto a closed subscheme Z C Y. A closed subscheme Z C Y
is a closed subset such that j.Oz = Oy /J for some quasi-coherent sheaf of ideals J on Y. A sheaf
of ideals J is quasi-coherent if J is exhibited as the kernel of Oy — 5.0z, where j : Z — Y is the

inclusion. (o soune Aoned 2)
In this case X = Ai is affine.”So A : X — X Xgpeck X is induced by the k-algebra homomorphism
¢ : kl[z,y] @ klx,y] — k given by f ® g — fg. ¢ is surjective with

kero=(f®1—-1® f: f € k[z,y])

Then Ay, = imSpecy = V(kerp) C X Xgpeck X. As V(ker ¢) is a closed affine subset of the
affine scheme X Xgpecr X, it is cannonically a closed subscheme, because the ideal sheaf Oy,
is quasi-coherent. Moreover, A is an isomorphism onto V(ker ). Hence X = Ai is separated
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over k. The same method shows that the morphism\Speca: Spec R — Spec S induced by the
monomorphism o : S — R is always separated. (17VeM ”EJ(A'] QRN \~Q€ \/\,S.J%)

e X is of finite type over k, if the canonical morphism f : X — Speck is of finite type, which
means that the morphism is both quasi-compact and locally of finite tI}pe. f X — Speck is
quasi-compact if the pre-images of all affine open sets are quasi-compact.”f : X — Speck is locally
of finite type if for all affine open U C X and V' C Speck with f(U) C V, the ring homomorphism
f#*: Ospeck(V) = Ox(U) is of finite type. In the 160’61\1?8 we have seen that for f being locally
of fintie type, it suffices to take any affine open cover.

In the case X = Ai, f : Spec X — Speck is induced by the inclusion ¢ : k < k[z,y]. Note that
Speck is a singleton as a set, and k[x,y] is quasi-compact, so f is trivially quasi-compact. Both
X and Spec k are affine, and the map ¢# on Speck is,exactly ¢. We know that k[x, %] is a finitely
generated k-algebra. So X is finite type over k. v

In summary, A% is an integral, separated, fintie type scheme over k. This proves that Ai is a Variety.\./
ii) We claim that an irreducible open subscheme Y of a variety X is also a variety.

e We have seen in the lectures that being a reduced ring is a stalk-local property. So an open
subscheme of a reduced scheme is also reduced. Then an irreducible open subscheme of X is
integral by Sheet 2. \_/

e By a remark in the notes, an open subscheme of a separated scheme over k is also separated over

k.

e Since X is of finite type over k, X is quasi-compact. Let {X1,..., X,,} be an affine open cover of
X. Let Y; ;=Y NX;. SoY; is an open subscheme of the affine scheme X; = Spec R;, where R;
is of finite type over k. Then Y; has an open cover {Dy,, ..., Dy, } for some fi,..., f;, € R;. Each
Dy, = Spec(R;)y;, where (R;)y, is of finite type over k. We have seen in the lectures that being a
finitely generated k-algebra is an affine-local property. Therefore Y; is locally of finite type. But
also Y = J_, Y7, so Y is also locally of finite type.

Finally, Y is a finite union of some affine open subsetvhich are quasi-compact. Therefore Y is
also quasi-compact. Hence Y is of finite type over k.

This concludes the proof of the claim.

Since A2 \ {0} is an open subscheme of AZ, it is a variety. We shall prove that ¥ := A2 \ {0} is not
affine by proving that Oy (Y) = k[x, y] (which is in fact proven in C3.4 Algebraic Geometry).

We note that AZ \ {0} = D, U D, for z,y € k[z,y]. To see this, we simply have
pED,UD, < x¢pVydp < p#(r,y) < pcAi\{0}.

We have (’)Az(Dx).: k[z,y]. = klz,y,271] and OAi(Dy) = k[z,y]y = k[z,y,y!]. By uniqueness of
the sheaf, we must have

Oprvjoy (A1 {0)) = 042 (A2 {0}) = O (D) N O (D) = k]

If A7\ {0} is affine, then A? \ {0} = Speck[z,y] = A%,&hich is impossible. Hence A2\ {0} is npt an
affine variety. J\ o

iii) Suppose that X = Spec R is a variety. By definition, we know that R is of finite type over k. There
exists a surjection ¢ : k[z1,...,x,] — R. Then Specy : X — A} is a closed immersion by definition.
Hence X is isomorphic to an closed subscheme of A7. Since X is a variety, X is integral. We deduce
that X is an affine variety.



iv) Since X is a variety, X is quasi-compact. So we only need to show that X is locally Noetherian, which
is an affine-local property. For affine open set U C X such that U = Spec R, we know that R is a of
finite type over k. We have a short exact sequence of k-algebras

0 —— kerp —— k[z1, ..., 4] Py R——50

Since k[z1, ..., 2] is Noetherian by Hilbert basis theorem, so is R. We conclude that X is a Noetherian

scheme. N

v) Let X := Al Uan {0} Al be the glued scheme. Suppose that X is separated. We look at the two
affine open sets Uy, Us in X isomorphic to Al = Spec k[z], their intersection is U1 N Uy = AL\ {0} =
Spec k[z, 7). By Question 3.(iv) (or a claim in the notes), the multiplication map

m: Ox(Ul) Rk Ox(UQ) — Ox(Ul N UQ)

is surjective. In fact m is the k-algebra homomorphism m : k[z] ®y k[z] — k[z,2~!], which is clearly

. . 71 . .
not surjective because z=" ¢ imm. Hence X is not separated.

vi) e Suppose that Z is locally closed. We know that Z is open in Z. We claim that the unique induced
reduce subscheme structure on Z C X makes Z a subvariety of X. Then it follows from (ii) that
Z is a variety.

Question 3
Let f: X — B be a morphism of schemes.

i) f is called an immersion (or locally closed immersion) if f is the composition X — U — B, where
X — U 1s a closed immersion and U — B is an open immersion.

Show that an immersion is a closed immersion <= f(X) C B closed set.

[Hint. For <= : glue the ideal sheaf of X L U with OX|B\<p(X)7 and check the quasi-coherence.|
ii) Show that Ax/p C X xp X is closed if B and X affine (notation of notes Sec 5.3)
iii) Show that Ay, p is an immersion.

[Hence f is separated <= Ax,p is a closed immersion <= Ax/p is a closed set.|

iv) We say that U,V C X are “nice” if U, V,UNV are affine open sets and Ox(U)®Rz0x (V) - Ox(UNV)

18 surjective.

e Suppose f is separated. Prove that for all affine open U, V' C X such that f(U), f(V) are contained
in an affine open subset of B, U,V are nice.

e Suppose that there exists an open cover X = (JU; such that for all z,y € X with f(z) = f(y),
there are nice U;, U; with = € Uy, y € U;j and f(U;), f(U;) are subsets of an affine open set of B.
Prove that f is separated.

[For B = Speck: (3 open cover X = JU;, all U;,U;j nice) = (f separated) == (all affine opens
U,V are nice)|

v) Show that P} is separated using (iv) (k any field). Deduce that P} is a variety.

Show that projective varieties (integral closed subschemes of P}) and quasi-projective varieties
(irreducible open subschemes of a projective variety) are varieties.



Proof.

i)

ii)

iii)

iv)

We propose the follow lemma:

A morphism f: (X,Ox) — (Y, Oy) is a closed immersion if and only if f is a homeomorphism
onto the closed subset f(X) CY and ff Oy, t(@) = Oxz is surjective for all z € X

Given this lemma, the proof of (i) is straightforward. “ = " is just the definition of a closed immersion.
For “ <=7, since f is an immersion we have ff = wf(x) ) gof, where d’j(x) 1 0B, 1) = Ovp(e) 18 an
isomorphism, and @f : Ovp(z) — Oxz is a surjection. Hence ff is surjective for all x € X. By the
lemma we deduce that f is a closed immersion.

Suppose that X = Spec R and B = Spec A for some rings R and A. Then the map A: X - X xp X
is induced from the A-algebra homomorphism ¢ : R®4 R — R given by r ® s — rs. So A = Specp :
Spec R — Spec(R ®4 R). We claim that Ax/p = V(kerp) = V((r®@1—-1®r:r € R)). This is
immediate from that R = (R®4 R)/ker ¢. So Ax/p is closed in Spec(R®4 R) = X xp X. Moreover,
the morphism A is a closed immersion. /

Let {U;}ier be an affine cover of X. (With possible refinement of this cover) for each U;, let V; be an
affine open of B such that f(U;) C V;. Then we know that each U; xy; U; is affine open in X xp X.
Let YV := Uiel U; xv;, U;. Then there is a canonical open immersion ¥ — X xp X. It is clear that
A maps X into Y. We need to show that this is a closed immersion. But by (ii) we already know
that AUi/Vi : U; — U; xy, Uj is a closed immersion, and that {U; Xy, U; }ier is an affine open cover for

Yy By the notes we deduce that A : X — Y is a closed immersion. Hence A : X — X xp X is an
immersion. /

e Let f : X — B be separated. Suppose that U = Spec R and V' = Spec.S. Suppose that
f(U), f(V) C C, where C = Spec A is affine open in B. Then U xp V = U x¢ V is affine in
X xp X. In particular, we have

OXXBX(U X B V) %JOX(U) ®A Ox(V) X R®aS

On the other hand, we note that UNV = A)_(}B(U xp V). Since Ax/p is a closed immersion, we

have
UNV = Axp(UNV)=Axp(A%5U xpV)) = AX/BO?] (U xpV)

Since Ax/p(X) is closed in X x g X, then UNV is isomorphic to a closedsubset of U x g V. Since
U xpV = Spec(R®4 S) is affine, U NV is also affine, and we have U NV = Spec((R®4 S)/I)

for some ideal I of R ®4 S. In particular we have a surjective A-algebra homomorphism
OXXBX(U X B V)—)Ox(UﬂV) /

Finally, since A is naturally a Z-algebra (i.e. a ring), we have the canonical surjective ring
homomorphism

Ox(U) Ry, Ox(V) — Ox(U) XA Ox(V) \/

Composing the maps above we obtain a surjective ring homomorphism
Ox(U)®z Ox(V) - Ox(UNYV)

Therefore U,V are nice.

e Since for each U; and U; there exists an affine open C' of B such that f(U;), f(U;) C C, then
Ui xpUj 2 U; x¢ Uj is affine open in X xp X. X xp X has an affine cover {U; xg U;}; jer by

;(}B(Ui xp U;) = U; N Uj. Since U;, Uj are nice, we have a

Ox(Ui) X7, Ox(Uj) — Ox(Ui N Uj) \/
If C' = Spec A, then the above map is A-bilinear, and hence factors through Ox (U;) @ 4 Ox (U;) =

the given assumption. Note that A
surjection



v)

vi)

Oxxpx(U; xgUj). Hence we have a surjection Oxx ,x (Ui xpUj) = Ox(U;NUj). Hence Ax/p :
UnU; = U;xpU;is a cloy/immersion. By the notes we conclude that AX/B X > X xpX
is a closed immersion.

Recall from Question 1 of Sheet 2 that P} = (J;_,U; where each U; = A} = Speck|zi, ..., zy).
The pairwise intersection U; N U; = Spec R;;, where R;; is the Oth grading of the ring of fractions
S~'k[zo, ...,xn], S is the multiplcative set generated by x;,xj. Next we look at the multiplication
homomorphism between the global sections of affine sets:

¢ : Ox(U;) ®, Ox(Uj) = Ox(UyNUj)

Recall that Ox(U;) = R; = k[xo xx”] and Ox(U; NU;) = Ry; = Ri[

xT; ’ xX; xX; €4
xi/x; € R;. Every element in R;; takes the form anzo am(xi/z;)™ for an, € R;. Then

l l
> am(ifa;)™ = so(Z an ® <xi/xj>m>
m=0

m=0
So ¢ is surjective% deduce that {Uy, ..., Uy,} is anopen cover of P} which is pairwise “nice”.” Using
the notation from (iv), B = Speck is a singleton.|/The conditions on the nice affine open cover are

xz] . Note that

satisfied trivially. Hence P} is separated over k.

Checking the remaining conditions is easy. We define P, by gluing finitely many copies of Aj’. Since
A7 is quasi-compact, reduced, and locally of finite type, so is P;. It remains to check that P} is
irreducible. In fact we have the following topological fact:

Suppose that X has an open cover {U;}icr of irreducible spaces such that U; NU; # @ for all
1,7 € I. Then X is irreducible. ’

Suppose that X is reducible. There are non-empty open sets V, W such that VN W = &. We may
assume that U; NV # @ and U; N W # &. Note that

UiﬂUjﬂVﬂW:(UiﬂUjﬂV)ﬂ(UjﬂW) :(UiﬂV)ﬂ(UiﬂUj)ﬂ(UjﬂW)
Since U; is irreducible, we have (U; N'V') N (U; N Uj) # @; since Uj is irreducible, we have (U; N U; N
V)N (U;NW) # @. This contradicts that V N W = @&. Hence X is irreducible.

Now since each U; = A} in P}! is irreducible, and U;NU; is non-empty, we deduce that P} is irreducible.
This finishes the proof that P} is a variety. é{{,g,o @“\ - u %o f(FGCL'
L

Let X C P} be a projective variety. By definition it is an integral closed subscheme of P}. So it is
quasi-compact and locally of finite type. Hence P} is of finite type over k. We need to prove that X
is separated. More generally, we would like to prove that

A closed subscheme X of a separated scheme Y (over any base scheme B) is sepamted.[V,f_Pﬁf?
By (iii) it suffices to show that Ax/p(X) is closed in X xp X. This follows from that )

Ax/p(X) = Ay/p(Y)N (X xp X)
and that Ay p(Y) is closed in Y xp Y.
We conclude that a projective variety is a variety.

For a quasi-projective variety, sin\ce}js an irreducible open scheme of a projective variety, by Question
O

2.(ii), it is also a variety.



Question 4

Fact.

i

ii)

iii)

iv)

v)

P} is complete (i.e. proper over k). In this exercise we work over an algebraically closed field k.

In notes, we showed that A! is not complete because Al x Al D V(xy — 1) — A! fails the universally
closed condition. Why is this not a problem for P! if consider P! x Al — A?

Let C C X be a closed subscheme. Prove that X is complete = C' is complete.
[Campare in topology: a closed subset of a compact space is compact|
[So the fact at the beginning implies also that all projective vorieties are complete.|

Let f: X — Y be a morphism of schemes, where X is universally closed and Y is separated (Hint.
graph). Show that im f CY (use fxOx onim f to get scheme) is closed and universally closed

[Compare topology: the image of a continuous map from a compact space to a Hausdorff space is closed
and compact.|

Let X be a complete variety. Show that s € T'(X, Ox) constant.
[Hint. T(X,Ox) = Mor(X, A') see Sec 2.3 notes.]

Deduce that affine varieties (# point, &) are never complete, and that the only global sections of a
projective voriety X are constant morphisms X — Al

Proof. Throughout the question, X XY is short for X Xspeck Y.

i) The universally closed condition does not fail because V(zy — 1) C Al Xk Al is closed in Al Xk Al but

not in P} xj Al Yo sugd 1 H'S clasie \V(To‘;’\ fl) e eJ—ﬁ D\J-c- Al er l}('\D

ii) Suppose that X is a complete variety. We need to prove that C' — Speck is universally closed. Let

g : Y — Speck be any morphism. Since X is universally closed, we know that f : X — Speck is
closed, and we have the commutative diagram as below, where f : X x; Y — Y is closed.

Xx,V —F 5 X
7l |1
y —9 Speck

Let ¢ : C' — X be the closed immersion. The projection C x; Y — C' factors through X x; Y via the
closed immersion j : C' XY — X X Y and the projection 7 : X XY — X. We have the commutative
diagram:

kaYHXkaLX

o) b

y —9 Speck

Since f: X — Speck is closed, the induced map €' — Speck is also closed. The composite map }‘Vo j
is closed because both f and j are closed. The diagram implies that C' is universally closed. Hence C
is a complete subvariety of X. \Swgfj

iii) First we prove that im f is closed. Let I'y : X — X X3, Y be the graphof f: X =Y. f: X = Y factors

r
as X *f> X %, Y —" Y. Since Y is separated, a claim from the notes shows that T’ f is a closed
immersion. In particular I'p(X) C X x; Y is y{ed. Since X is universally closed, 7: X x3x Y =Y
is closed. Then im f = 7w oI'¢(X) is closed.

Next we prove that im f is universally closed over k (for this part I think the separatedness of Y is



|Jr§

unnecessary). Let a: X — Speck and f : im f — Speck be the morphisms. Let g : Z — Speck be
any morphism. We look at the commutative diagram of base changes:

f

/\)
X xp Z —— — im f x, Z

m Xl lg lw

X#Speck%lmf

f

f:X —im [ is surjective, then so is f X XpZ —im f Xy Z. Let C Cim f xj Z be a closed subset.
Then 3(C) = a(f~1(C)) is closed because f is surjective and contiryxfs and « is closed. Hence 3 is

qeed]

a closed map. We deduce that im f is universally closed over k.

iv) We know that A} = Speck[z]. From Example 1 of Section 2.3 of the notes, we have a bijection

e b -oled
Mﬂ A}) <— Homy(k[z], Ox (X)) = Ox(X)

Since X is complete, it is universally closed. We know that A,lg is separated. Then for any morphism
f X — AL, by (iii) im f is closed and universally closed in A}. Since X is irreducible, so is im f.
Then we find that im f = V(x —a) for some a € k (this is a singleton on \ty affine line). Hence
I'X,0x) = Ox(X) = k. The global sections are constant morphisms on X.

v) Suppose that Y C A} is an affine variety with card( ) > 1 We take two distinct closed points

a=V({x;—ay, ..z, —ay)) and b =V((z1 — by, ... —ﬁ/ in Y We may assume that a; # b; for
By (i

some i. Then x; € Oy (Y) is a non-constant global 5ect10 , Y is not complete

Suppose that X is a projective variety. We claim that X is complete. Since X is an integral closed
subscheme of some P}, by (ii) it suffices to prove that P} is complete. (I don’t know if this proof is

/\exammable It is not shown in the notes. In Hartshorne thzs follows from Theorem I1.4.9, which is a

corollary of the valuation criterion of properness. So I choose not to go Wetazls here...) Now

by (iv), we know that the global sections of X are constant morphisms. O

Question 5

Note that any “commutative diagram” in a category C can be thought of as a functor F' : | — C where the
objects of | are the positions i in the diagram (where you place some object F (i) = C; € C), the morphisms of
| are the arrows of the diagram (together with all identity morphs i — i and composites)

i) What is the functor of points interpretation of @’ lig? (Hint. for hg consider 1°P and h* not hy)

ii) Explain briefly why the product, fibre product, gluing of sheaves are limits, and the coproduct, pushout,
gluing of schemes are colimits (e.g. every scheme = hgl of its affine opens)

iii) Suppose f, g are adjoint functors. Show that left adjoints commute with colimits, right adjoints commute
with limits.
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