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Section A: Introductory

Question 1

Let X,Y be vector fields on (M, g). Let p ∈ M and let α : (−ε, ε) → M be the integral curve of X with
α(0) = p. For all t ∈ (−ε, ε) let τt : TpM → Tα(t)M be parallel transport along α|[0,t]. Show that

∇XY (p) =
d

dt

(
τ−1t (Y (α(t)))

)∣∣∣∣
t=0

Proof. We adopt Einstein’s convention. A dot always denotes the derivative with respect to t, the parameter of a
curve.

Choose a coordinate chart (U ;x1, ..., xn) at p such that xi(p) = 0. Without loss of generality suppose that
α(−ε, ε) ⊆ U . {∂1, ..., ∂n} is a basis of TpM . We parallelly transport the basis vectors along α. Let Ei(t) :=

τt(∂i). Then {E1, ..., En} is a basis of parallel vector fields along α. Suppose that Y (α(t)) = Y i(t)Ei(t).
Since α is the integral curve of X, X = α̇ on α. Then

∇XY (p) = ∇α̇Y (α(t))|t=0 = α̇(Y i(t))Ei(t)|t=0 = Ẏ i(0)∂i

On the other hand,

d

dt

(
τ−1t (Y (α(t)))

)∣∣∣∣
t=0

=
d

dt

(
τ−1t

(
Y i(t)Ei(t)

))∣∣∣∣
t=0

=
d

dt

(
Y i(t)∂i

)∣∣∣∣
t=0

= Ẏ i(0)∂i

The result follows from above.

Question 2

Let (M, g) be an n-dimensional Riemannian manifold. Let p ∈M and let U be a normal neighbourhood of p.

Let {E1, . . . , En} be an orthonormal basis for TpM , let ψ : TpM → Rn be given by ψ (
∑n

i=1 xiEi) =

(x1, . . . , xn) and let ϕ = ψ ◦ exp−1p : U → Rn.

(a) Let γ(t) be a geodesic through p in U in M . Show that

ϕ ◦ γ(t) = (a1t, . . . , ant)

for (a1, . . . , an) ∈ Rn.

(b) Show that in (U,ϕ), we have gij(p) = δij and Γkij(p) = 0.

(c) Hence, or otherwise, show that there is open set V 3 p and orthonormal vector fields E1, . . . , En on V
such that

∇EiEj(p) = 0

Proof. (a)
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Section B: Core

Question 3

Let (M, g) be a Riemannian manifold. Recall that aKilling field onM is a vector field X such that LXg = 0

or, equivalently, that the flow of X near any point consists of local isometries.

(a) Let p ∈ M and let U be a normal neighbourhood of p. Suppose that X is a Killing field on (M, g) so
that X(p) = 0 and X(q) 6= 0 for all q ∈ U \ {p}.

By using the First variation formula, or otherwise, show that X is tangent to all sufficiently small
geodesic spheres centred at p.

(b) Show that X is a Killing field on (M, g) if and only if, for all vector fields Y,Z on M ,

g (∇YX,Z) + g (∇ZX,Y ) = 0

Proof. A dot always denotes the derivative with respect to t, the parameter of a curve.

(a) Let γ : [0, L] → U be a radial geodesic starting from p. By Proposition 3.15, there exists a variation
f of γ such that X = Xf satisfies Xf (t) = ∂sf(0, t) along γ.The first variation formula is given by

1

2
E′f (0) = −

∫ L

0
g(Xf ,∇γ̇ γ̇) dt+ g(Xf (t), γ̇(t))

∣∣∣∣t=L
t=0

,

where the energy1 is given by

Ef (s) =

∫ L

0
g(ḟ(s, t), ḟ(s, t)) dt.

Note that
d

ds
g(ḟ(s, t), ḟ(s, t))

∣∣∣∣
s=0

= (LXg)(γ̇(t), γ̇(t)) = 0,

since X is a Killing vector field. Hence

E′f (0) =

∫ L

0
(LXg)(γ̇(t), γ̇(t)) dt = 0.

Since γ is a geodesic, ∇γ̇ γ̇ = 0. We also have Xf (0) = X(p) = 0 by assumption. Substituting into the
first variation formula, we have

g(Xf (L), γ̇(L)) = 0.

X is orthogonal to γ at t = L. Since γ is orthogonal to the geodesic spheres centred at p, which have
tangent spaces of codimension 1, then X is tangent to the the geodesic spheres centred at p.

(b) For any Y,Z ∈ Γ(TM), g(Y,Z) = tr(g ⊗ Y ⊗ Z), where tr denotes the contraction of all covariant and
contravariant indices of g ⊗ Y ⊗ Z ∈ Γ(T2

2M). Since tr commutes with the Lie derivatives, we have

LX(g(Y,Z)) = LX(tr(g ⊗ Y ⊗ Z)) = tr(LX(g ⊗ Y ⊗ Z))

= tr((LXg)⊗ Y ⊗ Z) + tr(g ⊗ LXY ⊗ Z) + tr(g ⊗ Y ⊗ LXZ)

= (LXg)(Y, Z) + g([X,Y ], Z) + g(Y, [X,Z]).

1Cultural Remark. For a free particule moving along the worldline γ on a Riemannian/Lorentzian manifold M , the Lagrangian

is given by L[(γ(t))] = 1

2
mg(γ̇, γ̇). The energy defined in the lecture should really be called the action S[γ] =

∫ t0

0

L[γ(t)] dt.

Andrea
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On the other hand, we have

LX(g(Y,Z)) = X(g(Y,Z))

= g(∇XY, Z) + g(Y,∇XZ)

= g(∇YX,Z) + g(Y,∇ZX) + g([X,Y ], Z) + g(Y, [X,Z]).

Comparing the two equations, we obtain

(LXg)(Y, Z) = g(∇YX,Z) + g(Y,∇ZX)

In particular, LXg = 0 if and only if g(∇YX,Z) + g(Y,∇ZX) = 0 for all Y,Z ∈ Γ(TM).

Question 4

Let (M, g) be a Riemannian manifold, let f : M → R be a smooth function and let X be a vector field on M .

(a) Note that we have a linear map from vector fields to vector fields given by Y 7→ ∇YX. We define the
divergence of X to be the smooth function

divX = tr (Y 7→ ∇YX)

Show that if X is a Killing field then divX = 0.

(b) Recall that Y 7→ g(Y,−) defines an isomorphism between vector fields and 1-forms on M . We define
the gradient of f to be the vector field ∇f given by

g(∇f,−) = df.

We define the Laplacian of f to be the smooth function

∆f = div∇f

Show that

∆
(
f2
)

= 2f∆f + 2|∇f |2.

Now suppose further that M is compact, connected and oriented with Riemannian volume form Ω.

(c) Show that

LXΩ = (divX)Ω

Relate this to the result about Killing fields from (a).

(d) Show that if ∆f > 0 on M then f is constant.

Proof. We adopt Einstein’s convention. Let us work in coordinates! Let (U ;x1, ..., xn) be a chart and {∂1, ..., ∂n}
be the frame vector fields.

(a) Then divX = ∇µXµ = g(∂µ,∇µX). Since X is a Killing vector field, from Question 3.(b), we have

(LXg)(∂µ, ∂µ) = 2g(∂µ,∇µX) = 2 divX = 0.

Hence divX = 0.

Andrea

Andrea

Andrea

Andrea
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(b) The musical isomorphism TM ∼= T∗M identities the frame vectors ∂µ with frame covectors dxµ. So

∇f =
∂f

∂xµ
∂µ. Then

∇(f2) =
∂(f2)

∂xµ
∂µ = 2f

∂f

∂xµ
∂µ = 2f∇f

And

∆(f2) = div(2f∇f) = 2∇µ(f∇f)µ = 2∂µf(∇f)µ + 2f(∇µ∇f)µ = 2g(∇f,∇f) + 2f∆f

(c) Let p ∈M . We take (U ;x1, ..., xn) to be the geodesic normal coordinates at p, such that

xµ(p) = 0, gµν(p) = δµν , Γλµν(p) = 0.

The (pull-back of) volume form at p in the coordinates is given by

Ω =
√

det(ϕ∗g) dx1 ∧ · · · ∧ dxn = dx1 ∧ · · · ∧ dxn.

By Cartan’s formula,
LXΩ = d ◦ ιXΩ + ιX ◦ dΩ = d ◦ ιXΩ.

If X = Xµ∂µ at p, then we can compute

ιXΩ = ιX(dx1 ∧ · · · ∧ dxn)

= (−1)µ+1ιX(dxµ) dx1 ∧ · · · ∧ d̂xµ ∧ · · · ∧ dxn

= (−1)µ+1Xµ dx1 ∧ · · · ∧ d̂xµ ∧ · · · ∧ dxn.

Then

d ◦ ιXΩ = (−1)µ+1dXµ ∧ dx1 ∧ · · · ∧ d̂xµ ∧ · · · ∧ dxn + (−1)µ+1Xµ d
(

dx1 ∧ · · · ∧ d̂xµ ∧ · · · ∧ dxn
)

= (−1)µ+1∂νX
µdxν ∧ dx1 ∧ · · · ∧ d̂xµ ∧ · · · ∧ dxn

= ∂µX
µdx1 ∧ · · · ∧ dxn

= (divX)Ω.

No Christoffel symbols appeared in the calculation because everything was evaluated at p. Therefore
we obtain LXΩ = (divX)Ω at p. Since p is arbitrary, the relation holds on all M .

(d) We need to assume that M has no boundary.

By (c), we can consider the integral∫
M

∆f Ω =

∫
M

div∇f Ω =

∫
M
L∇fΩ =

∫
M
d ◦ i∇fΩ =

∮
∂M

i∇fΩ = 0.

Since ∆f > 0 on M , we must have ∆f = 0 on M . By (b) we have

∆(f2) = 2g(∇f,∇f) > 0,

because g is positive definite. Then following the same argument we must have ∆(f2) = 0 on M .
Hence g(∇f,∇f) = 0 on M . By definiteness of g, we have ∇f = 0. Since M is connected, f is
constant on M .

Andrea
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Section C: Optional

Question 5

The Euclidean Schwarzschild metric (of mass m > 0) is defined for
(
cos t

4m , sin
t

4m

)
∈ S1, r > 2m, θ ∈ (0, π)

and (cosφ, sinφ) ∈ S1 by

g =

(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2 dθ2 + r2 sin2 θ dφ2

and extends smoothly to θ = 0, π.

(a) Show that there are no geodesics in this metric with r constant.

(b) Show that, given any point p with r > 2m there exists a finite length geodesic γ starting at p ending at
a point q with r = 2m.

Proof. (a) We can derive the radial equation for a geodesic exactly the same way as in General Relativity (where
the Schwarzschild metric is Lorentzian).

The Lagrangian is given by

L[γ(s)] =

(
1− 2m

r

)
ṫ2 +

(
1− 2m

r

)−1
ṙ2 + r2

(
θ̇2 + sin2 θϕ̇2

)
,

where the dot denotes the derivative with respect to the affine parameter s. We observe that t and ϕ
are ignorable coordinates. We have

∂L
∂ṫ

= 2

(
1− 2m

r

)
ṫ = const,

∂L
∂ϕ̇

= 2r2 sin2 θϕ̇ = const.

We can use the SO(3) symmetry of the manifold to fix the geodesics on the plane θ = π/2. Then

θ̇ = 0. We set the constants J := r2ϕ̇ and E :=

(
1− 2m

r

)
ṫ, which are the angular momentum and

energy per unit mass.

Since γ is affinely parametrised, we have L[γ(s)] = g(γ̇, γ̇) = 1. This gives

L =

(
1− 2m

r

)
ṫ2 +

(
1− 2m

r

)−1
ṙ2 + r2ϕ̇2 =

(
1− 2m

r

)−1
E2 +

(
1− 2m

r

)−1
ṙ2 +

J2

r2
= 1.

Suppose that there is a geodesic with r = const. Then

E2 =

(
1− J2

r2

)(
1− 2m

r

)


