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Section A: Introductory

Question 1

Let X,Y be vector fields on (M,g). Let p € M and let a : (—e,e) — M be the integral curve of X with
a(0) = p. For all t € (—e¢,¢€) let 7y : T,M — T,;)M be parallel transport along a|[0’t]. Show that

VxY(p) = — (' (Y (a(t))))

Proof. We adopt Einstein’s convention. A dot always denotes the derivative with respect to t, the parameter of a

curve.

Choose a coordinate chart (U;z!,...,2") at p such that z°(p) = 0. Without loss of generality suppose that
a(—e,e) CU. {01, ...,0n} is a basis of T, M. We parallelly transport the basis vectors along . Let E;(t) :=
74(0;). Then {E1, ..., E,} is a basis of parallel vector fields along o. Suppose that Y (a(t)) = Y(t)E;(t).
Since « is the integral curve of X, X = & on a. Then

VY (p) = VaY (a(t))|mg = &Y' (1)) Ei(t)] =g = Y'(0)0;
On the other hand,

% (7" (Y (a(2)))) - = q (P (Y (1) Ei(1))) . =% (Y'(t)0;) i =Y"(0);

The result follows from above.

Question 2

Let (M, g) be an n-dimensional Riemannian manifold. Let p € M and let U be a normal neighbourhood of p.

Let {E1,...,E,} be an orthonormal basis for T,M, let ¢ : T,M — R™ be given by ¢ (3.1, x;E;) =
(z1,...,zy) and let ¢:¢oexp;1 U — R™

(a) Let v(t) be a geodesic through p in U in M. Show that
por(t) = (ait,...,ant)

for (ai,...,a,) € R™

(b) Show that in (U, ¢), we have g;;(p) = 6;; and Ffj (p) =0.

(c) Hence, or otherwise, show that there is open set V' 3 p and orthonormal vector fields Ey, ..., E, on V
such that
Vg, Ej(p) =0
Proof. (a)



Section B: Core

Question 3

Let (M, g) be a Riemannian manifold. Recall that a Killing field on M is a vector field X such that Lxg =0
or, equivalently, that the flow of X near any point consists of local isometries.

(a) Let p € M and let U be a normal neighbourhood of p. Suppose that X is a Killing field on (M, g) so
that X (p) =0 and X (¢q) # 0 for all ¢ € U \ {p}.

By using the First variation formula, or otherwise, show that X is tangent to all sufficiently small
geodesic spheres centred at p.

(b) Show that X is a Killing field on (M, g) if and only if, for all vector fields Y, Z on M,

9(Vy X, Z)+g(VzX,Y) =0

Proof. A dot always denotes the derivative with respect to t, the parameter of a curve.

(a) Let v :[0,L] — U be a radial geodesic starting from p. By Proposition 3.15, there exists a variation
[ of v such that X = X satisfies X¢(t) = 0,f(0,t) along v.The first variation formula is given by

1 L t=L
S0 = = [ 9(X Vii)dt 49X, 0, 50)]
2 0 t=0

where the energy! is given by
L
Bi(s) = [ ali(sit). fs) v

Note that

S50, §(5.0)

since X is a Killing vector field. Hence

L
By0) = [ (Exa)(0).40) e =0,

Since 7 is a geodesic, V43 = 0. We also have X;(0) = X (p) = 0 by assumption. Substituting into the
first variation formula, we have

9(X5(L),3(L)) = 0.

X is orthogonal to v at t = L. Since 7 is orthogonal to the geodesic spheres centred at p, which have
tangent spaces of codimension 1, then X is tangent to the the geodesic spheres centred at p.

(b) Forany Y, Z e I'(TM), g(Y,Z) = tr(¢g ® Y ® Z), where tr denotes the contraction of all covariant and
contravariant indices of g ® Y ® Z € T'(T2M). Since tr commutes with the Lie derivatives, we have

Lx(g(Y,Z))=Lx(tr(g®Y ® Z)) =tr(Lx(g®Y ® Z))
=tr((Lxg) @Y @ 2Z)+tr(g @ LxY @ Z)+tr(¢g @Y @ LxZ)
= (Lxg)(Y, Z2) + 9([X,Y], Z2) + g(Y, [X, Z]).

!Cultural Remark. For a free particule moving along the worldline v on a Riemannian/Lorentzian manifold M, the Lagrangian

to
is given by L[(v(t))] = %mg("y, 4). The energy defined in the lecture should really be called the action S[vy] = / L[y(t)] dt.
0
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On the other hand, we have

Lx(g(Y,Z)) = X(g9(Y,2))
=9(VxY,Z) +g(Y,VxZ)
=9(Vy X, Z) +g(Y,VzX) +g([X,Y], Z) + g(Y, [X, Z]).

Comparing the two equations, we obtain
(Lxg)(Y,Z) = g(Vy X, Z) + g(Y,VzX)

In particular, Lxg = 0 if and only if ¢(Vy X, Z) + ¢g(Y,VzX) =0forall Y, Z € I'(TM). O
PorFect
Question 4

Let (M, g) be a Riemannian manifold, let f : M — R be a smooth function and let X be a vector field on M.

(a) Note that we have a linear map from vector fields to vector fields given by Y +— Vy X. We define the
divergence of X to be the smooth function

divX =tr (Y — VyX)

Show that if X is a Killing field then div X = 0.

(b) Recall that Y +— ¢(Y,—) defines an isomorphism between vector fields and 1-forms on M. We define
the gradient of f to be the vector field V f given by

g(Vf,—)=df.
We define the Laplacian of f to be the smooth function
Af =divVf
Show that

A(f%) =2fAf +2|Vf2

Now suppose further that M is compact, connected and oriented with Riemannian volume form ).

(¢) Show that
LxQ = (divX)Q

Relate this to the result about Killing fields from (a).
(d) Show that if Af >0 on M then f is constant.

Proof. We adopt Einstein’s convention. Let us work in coordinates! Let (U;x!,...,2™) be a chart and {0, ..., 0, }
be the frame vector fields. anly P He Crimac 18 orMionotamal ab R poiud p Jae‘t-l wns]&u‘-Mj/

whiel € Lare Jov tan £nd

(a) Then divX = VuX“ég(au, V,X). Since X is a Killing vector field, from Question 3.(b), we have
(Lx9)(0u,0,) = 29(0,, V., X) = 2divX = 0.

Hence div X = 0. \/
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(b)

The musical isomorphism TM = T*M identities the frame vectors 9, with frame covectors dz*. So

of
Vf = %8,u Then
a(f?)
ozt

of

dah

V(f?) = Oy =2f=—0,=2fVf

And

A(f?) = div(2fV f) = 2V, (fV )" = 20, f (V)" + 2f(VuV ) =29(V [,V f) + 2fAf J
Let p € M. We take (U;z',...,2") to be the geodesic normal coordinates at p, such that

zt(p) = 0, g,ul/(p) = 5,ul/7 F;}V(p) =0.

The (pull-back of) volume form at p in the coordinates is given by

Q = /det(p*g)da! A--- Ada"™ =dat A Ada™.

By Cartan’s formula,

LxQ=doitxQ+i1xo0dQ=doix.
If X = X*0, at p, then we can compute
1xQ = ix(dzt A Ada™)
= (=" x(da*)dat A AdaF A - A da”
= (=DPHIXHEdzt A AdaE A A da™

Then

dOLXQ:(—1)”+1dX“/\d:L‘1/\---/\(T:L‘\“/\---/\d:E”+(—1)“+1X“d(d:z:l/\---/\gzz:\/‘/\---/\d:r:">

= (=1)*19, X da” Adat A Adab A A da”
= 9 Xt daz' A A da”
= (div X)Q.

No Christoffel symbols appeared in the calculation because everything was evaluated at p. Therefore
we obtain Lx = (div X)Q at p. Since p is arbitrary, the relation holds on all M. j

We need to assume that M has no boundary.

By (c), we can consider the integral

/AfQ:/ divaQ:/ ﬁva:/ doinQ:?{ iv Q=0
M M M M oM

Since Af > 0 on M, we must have Af =0 on M. By (b) we have
A(f?) =29(Vf,Vf) >0,

because ¢ is positive definite. Then following the same argument we must have A(f?) = 0 on M.
Hence g(Vf,Vf) = 0 on M. By definiteness of g, we have Vf = 0. Since M is connected, f is

constant on M. / é\ OJ
W
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Section C: Optional

Question 5

t

The Euclidean Schwarzschild metric (of mass m > 0) is defined for (cos 4%,

and (cos ¢, sin ¢) € S' by

sinﬁ) €S r>2m,0c(0,m)

2 2m\ "
g:<1—:1>dt2+<1—;n> dr? + r2 d6? + 12 sin? 0 d¢?

and extends smoothly to 6 = 0, 7.
(a) Show that there are no geodesics in this metric with r constant.
(b) Show that, given any point p with r > 2m there exists a finite length geodesic v starting at p ending at
a point ¢ with r = 2m.
Proof. (a) We can derive the radial equation for a geodesic exactly the same way as in General Relativity (where
the Schwarzschild metric is Lorentzian).
The Lagrangian is given by

Lly(s)] = (1 - 2m> 24 (1 - 2m>_1 #2402 (6 4 sin? 057

r r

where the dot denotes the derivative with respect to the affine parameter s. We observe that ¢ and ¢
are ignorable coordinates. We have

oL 2 . oL
— =21~ om t = const, = — 292 &in? 0¢ = const.
ot r ¢

We can use the SO(3) symmetry of the manifold to fix the geodesics on the plane § = /2. Then

. 2 .
6 = 0. We set the constants .J := r?p and E := (1 — m) t, which are the angular momentum and
T

energy per unit mass.

Since 7 is affinely parametrised, we have L[y(s)] = g(%,7) = 1. This gives

2 ) 2 -1 92 -1 2 -1 2
c=(1-2) e (1-2) e = (1-2) B (1-2) R
r r r r r

Suppose that there is a geodesic with » = const. Then



